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1. Overview

In this paper we report on the first year of the PrkAda project. Our aim is to de-
velop a system for delivering Artificial Intelligence applications developed in the
ProKappa system in a pure-Ada environment. We discuss the goals of the project,
describe in detail the ProKappa core and ProTalk programming language; de-
scribe the current status of our implementation, with examples; discuss the limi-
tations and restrictions of the current system; and describe the development of
Ada-language message handlers in the ProKappa environment.

2. Goals

To quote one of our favorite books:

The United States Department of Defense (DoD) is a major consumer of
software. Like many computer users, the Defense Department is having
a software crisis. One trouble centers on the programming Babel--the
department's systems are written in too many different languages. This
problem is particularly acute for applications involving embedded sys-
tems----computers that are part of larger, noncomputer systems, such as
the computers in the navigation systems of aircraft. Since timing and
machine dependence are often critical in embedded systems, programs
for such systems are often baroque and idiosyncratic. Concerned about
the proliferation of assembly and programming languages in embedded
systems, the DoD decided in 1974 that it wanted all future programs for
these systems written in a single language. It began an effort to de-
velop a standard language.

Typical embedded systems include several communicating computers.
These systems must provide real-time response; they need to react to
events as they are happening. It is inappropriate for an aircraft navi-
gational system to deduce how to avoid a mountain three minutes after
the crash (in the unlikely event that the on-board computers are still
functioning three minutes after the crash). A programming language
for embedded systems must include mechanisms to refer to the duration
of an event and to interrupt the system if a response has been delayed.
Thus, primary requirements are facilities for exception handling,
multi- and distributed processing, and real-time control. Since the
standard is a programming language, the usual other slogans of modern
software engineering apply. That is, the language must support the
writing of programs that are reliable, easily modified, efficient, ma-
chine-independent, and formally describable. A request for proposals

produced 15 preliminary language designs. The Defense Department
chose four of these for further development. After a two-year competi-
tion, it selected a winner. This language was christened "Ada" in honor
of Ada Augusta, Countess of LoveIace, a co-worker of Babbage and the

first programmer. [Filman84, pp. 201--202]

Ada has matured. There are currently many commercially available compil-

ers for Ada systems. Ada is now required for much DOD, NASA, and other govern-
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ment programming. But a language developed primarily for embedded and real-

time systems is awkward for developing Artificial Intelligence (AI) applications--
Ada lacks many of the facilities which have eased the task of constructing AI
systems. (As we shall see, Ada has certain properties that also make it awkward
for deliverying AI applications--alleviating these misfortunes being a large com-
ponent of this work.) The goal of this work, therefore, is to develop a system for
Ada-language delivery of AI applications. That is, we propose that the user
develop his or her system in a traditional, flexible AI environment (ProKappa).
This includes creating a knowledge base of objects, a set of Aria-language message
handlers, and a collection of rules and code in the ProKappa language ProTalk.

Using the compilation tools developed in this work, the user's ProTalk can then be
translated to Ada. This Ada can then be linked with our Ada-language object

library and the user's message code and embedding system. The object library
can, in the course of the application, read and create ProKappa knowledge bases.
The net result is an AI application delivered in a pure-Ada environment. We
illustrate this process in Figure 1.

From an applications point-of-view, AI as a technology has arisen because,
using conventional technologies, it has proven difficult to build programs that
solve certain classes of problems. These problems are often characterized by an
irregular structure, by the necessity of creating complex data structures and ap-
plying semantically rich interpretations to these data structures, by the useful-
ness of a full library of data structure manipulation routines and an environment
that can manipulate, coherently present and easily understand such structures.
Often these mechanisms are packaged as knowledge-based systems (KBS) devel-
opment tools. Traditional AI KBS tools provide:

Objects. Objects represent the elements of the domain of discussion. Objects
have slots that describe their properties, can be arranged in
class/instance hierarchies, inherit values along these hierarchies, in-
voke behavior on slot access and modification, and compute through

messages.

Rules. Rules are a pattern/action, nondeterministic form of programming.

They ease the programming task by enabling the encapsulation and
quantumization of domain knowledge, and by freeing the programmer
from explicit control decisions. (On the other hand, rules also
complicate the programming process by encapsulating and quantizing
domain knowledge and making the control decisions inaccessible to the

programmer.)

Graphic development environment (GDE). A GDE provides the devel-
oper of a KBS with tools for understanding and modifying knowledge
base structure and program behavior. Examples of GDE facilities can
include "graphers" for presenting inheritance and other relationships
as node/arc graphs, tabular or display formats for presenting and modi-
fying object/slot values, and stepping program debuggers.

Application graphics toolkits (AGT). Application graphic toolkits are
elements provided the application developer to aid in creating the end-
user application graphics. Examples of such elements range from sim-
ple value displayers and single-choice, pop-up menus to the widgets of
an X-windows toolkit.
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Figure 1. The development and delivery environments.

The earliest, most prominent, and most powerful commercial KBS develop-
ment tools were written in Lisp. Examples of such systems include KEE [Fikes85],
ART, and KnowledgeCraft. These systems built on the native Lisp environment to

provide symbolic programming, automatic storage management (garbage collec-
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tion) and an extensive set of native graphic, symbolic debugging tools.
Unfortunately, such Lisp environments proved less than complete commercial
successes. Problems faced by these products include dependenceon an unusual
programming language, a lack of connectivity to other systems, the requirement
of a large run-time environment, and the difficulty of doing realtime program-
ming with most implementations of garbage collection. These limitations re-
stricted most KBS implementationsto be either purely laboratory experimentsor
relatively stand-alone applications.

Currently, there is a trend towards the developmentof KBS tools in "more
conventional" languages. Most such efforts are C-based. C seems to have emerge
as the lingua franca of the programming universe. C has the advantage of being
small, having an easily implemented compiler, of (consequently) running on al-
most all platforms, and of being familiar to many programmers. C is (except for
the more obscure features) easily learned. C is flexible, allowing as it does access
to most of the primitive machine operations, addresses of functions, and the run-
time stack. On the other hand, C has several disadvantages: it is relatively

unstructured, has few built-in language features to deal with the problems of
building large systems, is somewhat non-standardized (and thus nontrivial to
port), is basically unreadable and is difficult to maintain. Our favorite such C-
based KBS tool is ProKappa.

3. ProKappa

ProKappa is IntelliCorp's C-based KBS development and delivery tool. ProKappa
was first released in late 1990: it is still undergoing some evolution (which makes

building a delivery environment for it somewhat more of a challenge.) As of this
writing, the ProKappa development environment runs on Sun, IBM, and Hewlett-
Packard UNIX-based workstations. ProKappa has the following major components:

Substrate. The substrate provides facilities corresponding to a Lisp system:
datatype definition, creation, list utilities (e.g., length and print), and
garbage collection.

Object manager. The object manager provides the object (frame) system,
including inheritance and access/modification demons.

Rule system. The ProKappa rule system is called ProTalk. It allows the in-
termixing of rule-based and conventional, imperative styles of pro-
gramming.

Developer interface. ProKappa provides both a graphic developer inter-
face and Sabre-C, a symbolic "read-eval-print" loop for C.

User interface toolkit. ProKappa provides a number of predefined im-
ages, specified by objects, an object-based dialog box facility, and access
to X/Motif.

Database access. ProKappa includes a module for accessing SQL databases,

moving data between the database and object system.
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As we are creating a delivery system, we deal with only the first three of
these in this work. In general, we speak of the substrate and object manager to-
gether as the core.

3.1 Substrate

The substrate corresponds to the Lisp level of KEE-like environments. The
ProKappa substrate provides several different primitive datatypes, which collec-
tively form the what is officially called the type ProType. In our more mathemat-
ical descriptions below, we call this set the "domain." Most important subtypes of
ProType arc:

Symbols. Symbols are like the symbols of Lisp. Symbols have properties (a
property list) and print names. In ProKappa, there is a single symbol
table (unlike the packages of Common Lisp). All symbols are on this
table; ProKappa does not support uninterned or generated symbols.
There are functions for taking a string and returning the corre-
sponding symbol. Symbols are permanent; they are not garbage col-
lected and cannot be explicitly deleted.

Cons cells. These correspond to Lisp's cons cells. A cons cell has a car and
cdr field, each of which can hold a ProType. There is a cons operation
for creating cells, and rplac operations for modifying cell contents.
Cons cells (and arrays, below) are garbage collected.

Arrays. These are dynamically created, zero-based, and garbage collected.
Each array cell can hold any element of the domain. Arrays keep track
of how large they arc. That is, an array has a size (below its maximum
size) and there are explict operations for changing that size.

Numbers. ProKappa supports three kinds of numbers: integers, floats, and
double floats.

Booleans. True and false.

Strings. Sequences of characters.

Methods. Methods are pointers to functions. A method can be a slot value
on an object; sending a message to that object selected by that slot ap-
plies that function to the remaining arguments of the message. Ada
does not have function-valued datatypes; as we discuss below, this

presents a challenge for our Ada core.

Objects. Objects represent the elements of the application domain of dis-
course. Objects have many fields, including slots (and facets of slots).
These slots and facets have values, which are drawn from the domain.

We discuss objects in detail below.

The substrate also supports several other primitive data types. Many of these rep-
resent internal system structures, and perhaps should not have been documented
at the user level.

5
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The ProKappa substrate also provides automatic storage management
(garbage collection, or GC). That is, AI systems usually revolve around allocating
elements from the heap, and passing and storing many pointers to such elements.
At any point in the execution of the program, there are certain live "roots"--
elements identified by name in some active portion of the program. These are
basically (1) global variables and structures that include pointers, and (2) vari-
ables and structures allocated on the stack (the locals and parameters of the cur-
rently active procedures, back to the main calling program). These roots include
pointers to other heap-allocated structures, which include pointers to other heap
structures, and so forth. The closure of this "pointing to" relationship over the
roots constitutes the live storage. As long as (1) we can identify which part of
each structure is a pointer, and which, constant data (e.g., numbers), and (2) the
program does not execute any pointer conversion or pointer arithmetic operation
(e.g., using unchecked_conversion on a pointer), then all other heap allocated
storage is inaccessible--it is garbage; its space can be reused. Having a program
mechanism that collects garbage is useful, because a garbage collector enables a
large class of programs that would otherwise run out of space to continue indef-
initely. It saves the programmer the difficult (if not impossible) diligence of
knowing when a shared structure is no longer in use, concomitantly enables
considerable sharing instead of copying, and cures a source of insidious bugs.

There are two major themes of garbage collection algorithms, reference
counts and pointer following. Reference count mechanisms keep track, for each
cell, the number of active pointers to it. Every time a pointer is checked, these
reference counts must be updated. A cell whose reference count goes to zero is
garbage, and may be added to the free list. Reference count mechanisms require
capturing every pointer modification, have the advantage of spreading out the
effort of garbage collection through a programs execution, and the disadvantages
of requiring space in each cell for the reference count and of being unable to
collect circular structures that are nevertheless garbage. (That is, as illustrated in
Figure 2, the given cells, with no external pointers, are garbage, but each still has
a positive reference count.)

1 1 1

Figure 2. Circular garbage

Pointer following algorithms allocate (during garbage collection) a "mark
bit" for each cell or structure. The algorithm consists of (1) turning off the mark
bit of all cells, (2) starting at the roots, marking each cell by following pointers
(sweeping). It is unneccesary to follow the pointers of cell that is already
marked. When this process is complete, all cells that are still unmarked are

garbage. Mark and sweep algorithms have the advantage of finding all garbage
and allowing a simpler assignment statement, but the disadvantage, in this un-
modified form, of requiring a pause in the overall program activity (which can
impact the real-time or regular behavior of the system.) Mark and sweep also re-
quires access to the program stack, which is allowed in C but not possible in Ada.
There are versions of pointer following algorithms that avoid the use of the stack
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during garbage collection and which can be run concurrently with the main
process ("real-time garabage collection").

ProKappa uses the latter approach. ProKappa reserves the lowest three bits
of each data item as a tag, using this to discriminate between pointers and non-
pointers and among the varieties of each. (This can potentially cause some "false
positives"-- non-pointer data that is confused with a pointer, resulting in uncol-
lected garbage and extra work for the garbage collector, but cannot result in col-
lecting non-garbage.) In Ada, lacking both stack access and reliable access to the
dereferencing of pointers, more convoluted mechanisms are required. We discuss
these below.

3.2 Objects

In this section we attempt a relatively more formal specification of the ProKappa
object system. We have taken the liberty of modifying the names of functions and
predicates in this more formal specification. We are really describing a collection
of programs that allocate storage locations and, in the course of program execu-
tion, modify these locations. Hence, the veneer of predicate calculus semantics
must be understood in the context of the semantics of assignment operations of
executing programs. Our logic describes static truths--things true at a single
point in program execution. Since programs actually modify data, a statement
may be true at one instant and false later, much as a variable may take changing
values in the course of program execution. Sometimes, a particular operation may
have a "universally quantified consequence," which should be understood to
mean that it modifies several locations. Additionally, the modification of a location

may have other, to be specified, consequences.

The object system is built on the substrate. ProKappa provides two kinds of
objects, classes and instances. Every object is either a class or an instance, but not
both. (This constrasts with KEE, where an object could be both a class and an in-
stance of another class). That is,

forall x. object(x) -> (class(x) /= instance(x))

ProKappa provides the relations subclass (class, class) and element-of
(instance, class). The inverses of these relations are superclass and class. For ex-
ample, we can have a class of sensors, with a subclass of electrical-sensors. AC-
Sensor22 can be an instance of electrical-sensors. Subclass and element-of (and

superclass and class) are many-to-many relations--for example, an instance can
be an element-of many classes; a class can have many subclasses. (The parents of
an object are explicitly ordered; more formally, there is a map from the parents of
an object to a contiguous set of the integers starting at one. Less formally, the
parents of an object are kept in a list, and sometimes the order of the parents in
this list matters.) Collectively, an object which is a subclass or element-of an-
other object is a child of that object. The inverse relation of child is parent.
Correspondingly, we use the terms ancestor and descendant to express the closure
over the parent and child relations. Subclass cycles are illegal; that is, we cannot
have

subclass(A0, A1) & subclass (A1, A2) & ... & subclass (An, A0)
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Certain instances are applications and modules. There is a relation, in, such
that every object is in a unique application or module. That is,

forall x, object (x) -> exists[ m. ((application (m) or module(m)) & in(x, m)

Modules are only in applications; all applications are in a special "system
application," which is in itself. That is,

forall x, y. module (x) & in(x, y) -> application (y)
forall x. application (x) -> in (x, system_application@)

in (system_application@, system_application@)

Objects are either named or are anonymous. Names arc symbols. There is a
function name-of (object) I-> symbol that returns the name of an object.
Unfortunately, in ProKappa the name space is universallthere can be only one
object of a given name in the system. (This mistake will be corrected in latter
versions.) More formally

forall x, y. named-object(x) -> (name(x) = name(y) -> x -- y)

Like symbols, objects have properties. That is, there are functions set-prop-
erty (object, symbol, domain), get-property (object, symbol), and remove-prop-
erty on objects. These operations behave with assignment semantics.

Objects have slots. Abstractly, a slot is a binary relation on objects and the
domain. That is, defining a slot on a class of objects is creating a new relation on
that class (and, under most circumstances, its descendants) whose second parame-
ter is on the domain. (Of course, mathematically, all relations exist over every

object, and are just false or undefined for lack of other information. However,
structurally, slot creation extends objects; pragmatically, most predefined
ProKappa functions error if invoked on objects without the specified slot.) As a
corollary of the concrete realization of slots, every slot in an object has a unique
name, drawn from the set of symbols. Thus, it is more correct to view slots as a
collection of binary and ternary relations: has-slot (object, symbol), and has-
value (object, symbol, domain). It is also useful to speak of slots concretely, as, for
example, "the slot S." This should be understood as shorthand for "the slot S in
object 0."

"In the default case," slots inherit over the subclass and element-of relation.
That is, (with exceptions to be described below) if class C has slot S, then every
subclass and instance of C also has slot S. More specifically, every slot has a slot

type, one of default, subclass, or own. Default slots inherit to subclasses and in-
stances. Subclass slots inherit only to subclasses. Own slots do not inherit at all.

Every slot also has an inheritance role, one of: single-value-no, multi-value-
no, single-value-override, multi-value-override, method, single-value-initial,
multi-value-initial, self-first-union, self-last-union, and monitor. (This last role

applies only to facets, discussed below.) In general, inheritance roles split into
single-valued roles and multi-valued roles. A single-valued role implies that at
most one element of the domain can be in this slot at any time; that is, the slot is

functional. The system errors on an attempt to add more elements of a single-val-
ued slot. Method inheritance (for inheriting functions) is single-valued; monitor

inheritance, multiple-valued.

8



IntelliCorp PrkAda Interim Report

Default slots inherit to subclasses and instances, subclass slots only to sub-

classes, and own slots, not at all. We call the slot type and inheritance role of a slot
it's signature. It is an error to have an object with two parents with slots of the
same name but different signatures.

forall p, c, s. has-slot (p, s) &
((slot-type (p, s) = default & parent (p, c)) or
(Slot-type (p, s) -- subclass & superclass (p, c))) --

inherits (p, c s)

forall p, c, s. inherits (p, c, s) -> has-slot (c, s)

forall p, c, s, x. inherits (p, c, s) & slot-type (p, s) = x ->
slot-type (c, s) = x

forall p, c, s, x. inherits (p, c, s) & inheritance-role (p, s) = x ->
inheritance-role (c, s) = x

forall pl, p2, c, s, x. ~ (inherits (pl, c, s) &
inherits (p2, c, s) &

(slot-type (pl, s)/-- slot-type (p2, s) or
inheritance-role (p l, s)/=

inheritance-role (132, s)))

Slots originate only in classes. That is, no instance object has any slot that is
not a default slot of (at least) one of its parents. More specifically

forall c, s. instance (c) & has-slot (c, s) -> exists p. inherits (p, c, s)

Slots in objects have values drawn from the domain. Single-valued slots have
at most one value. The values of a multiple-value slot are an ordered set--the
values have an order, but values do not repeat. For the sake of further discussion,
we introduce the notion of local-value. A value is a local-value of an object, slot if

it has been explicitly asserted that that object, slot has that value. (There is
effectively a constant called "unknown," (which we designate as "?") which is the
default local-value of all slots.)

The combined-value (or, more simply, the value) of an object, slot is a func-
tion of (1) the local-value of the object, slot; (2) the inheritance role of that ob-

ject, slot; (3) the combined-values of the slot's parents. The intended semantics,
by inheritance role, is

No inheritance: The local value is the combined value.

Override inheritance: The local value is the combined value if it is not
unknown, otherwise, the values of the first parent in the parent order

with any values (non-unknown) is used.

Initial inheritance: If the local value is unknown, the semantics are the
same as override inheritance. With changing from unknown to a local

value, the combined value is made local. With an already existing local
value, that local value.

9
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Self-first-union and self-last-union: These roles combine the values
of all parentsinto a set, putting the local values first (last).

Let exists-first be a quantifier that selects the first element of a set that sat-
isfies a predicate. Ignoring the single-value/multiple-value issue, we get

forall c, s x. inheritance-role (c, s) = no ->
forall x. combined-value (c, s, x) == local-value (c, s, x)

forall c, s. inheritance-role (c, s) = override ->
(((exists x. local-value (c, s, x) & x --= ?) ->

(forall y. local-value (c, s, y) -- combined-value (c, s, y))) &
(((forall x. local-value (c, s, x) -> x = 7) ->

(exists-first p in parents (c) such that
inherits (p, c, s) &

exists y. combined-value (p, s, y) ->
forall z. combined-value (c, s, z) --

combined-value (p, s, z)))))

forall c, s. inheritance-role (c, s) = self-first-union ->
(forall x. combined-value (c, s, x)

(local-value (c, s, x) or

(exists p. parent (p, c) &
inherits (p, c, s) &

combined-value (p. s. x))))

Initial inheritance is like override, except that changing the local value of
an initial slot from unknown causes the current combined value to be installed as
the local value. Self-first-union and self-last-union differ in the order of the in-

dex of the values (local values first or last). Method inheritance has the same se-
mantics as override inheritance, except monitors (disucssed below) are not run.
Monitor inheritance is like union, except values are indexed by their priority

order, highest first.

Slots have facets. That is, more formally, there is a relation has-facet (object,
symbol, symbol), and a relation facet-value (object, symbol, symbol, domain).
Facets inherit with their containing slot. Thus,

forall c, s, L inherits (c, s) == facet-inherits (c, s, 0

Facets have inheritance roles. In contrast with slots, it is legal to introduce

facets at the instance level. Facets hold values. Conceptually, facets are for addi-
tional "annotational" information on the slots. More formally, we could extend

the set of possible slots to include a "facet-name" type, provide an operator that
takes two symbols and creates a facet-name, and provide similiar axioms, with ex-
ceptions such as the slight differences in inheritance roles, lack of monitors, and
the ability to introduce facets on any object.

There exist functions for dynamically creating new classes and instances,
new slots in classes, and new facets on on objects. Slots and facets may be deleted;

"deleting" an object marks it as deleted (unusable for other operations) but does
not reclaim its storage. (Hence, it still exists as an element of the domain.)

I0
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There are functions for testing if a slot or facet exists on an object and for
retrieving the elements of the signature on the slot and facet. The signature of a
slot or facet can be changed only at the "originating" object--an object with the

slot whose parents do not have the slot. (In the case of multiple inheritance, this
could cause a signature-conflict error.)

There also exist functions for dynamically changing the parents of an ob-

ject. This may cause some slots on the object to cease to exist. When a new slot is
created in a class, (module the slot type) that slot is inherited to the descendants of
the class. There are functions for setting, adding-to, removing from, and retriev-
ing the values of slots and facets. The semantics and behavior of these functions
(at least with respect to slots) is modified by the monitor mechanism,

3.3 Monitors

Monitors are objects designed to "watch" slots, acting on changes and retrivals.
Monitors can act on slot value modification, slot value retrieval, and on associat-

ing with (attaching) or disassociating from (detaching) a slot. Monitors objects
have three significant slots, "action," "attached," and "detached." The values of
these slots are functions. Monitors also have a "level," a priority, and several

flags.

There are two kinds of monitors, WhenNeeded monitors and WhenChanged

monitors. WhenChanged monitors split further into two varieties, BeforeChanged
monitors and AfterChanged monitors. Semantically, WhenNeeded monitors run
on value retrieval; WhenChanged, on value modification. BeforeChanged moni-
tors run before a slot's value is changed, and can modify what the change will be;

AfterChanged monitors run after the slot's value is changed.

Monitors can be attached to slots. Effectively, a monitor is stored on a
WhenNeeded or WhenChanged facet of that slot. This implies that monitors can be
inherited. The act of attaching a monitor (even if that attachment comes through
inheritance) causes the attach method of the monitor (if any) to be run. The act
of detaching a monitor correspondingly causes the detach method of the monitor
to be run.

All monitor functions take as a parameter a "monitor info" data structure,
which has fields describing the object and slot on which the monitor is running,
the monitor object itself, whether the inheritance role of the slot is single or
multiple-valued, and the level, flags, and priority of the monitor. When there are
several monitors attached to a particular slot, they run in priority order, from
highest to lowest. Associated with storage and retrieval operations is a numeric
"level" (which defaults to the value of a global variable). Monitors whose level is

above this value are not run (suppressed.)

More specifically, when a slot value modification operation (setting, adding
or removing values) is done on a slot that does not have any WhenChanged moni-
tors, the local value is computed and the inheritance role is used to determine the
new combined value.

When a slot with WhenChanged monitors is modified, the system computes
the set of BeforeChanged monitors whose level is greater than or equal to the

11
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level specified in the modification operation. It orders this set by priority. It
then applies the action of these monitors in turn to the newly added values, newly
removed values, and monitor information. Each function computes new sets of
changed values, which are then given to the next monitor in the priority se-
quence. After the last BeforeChanged monitor, the added and removed values and
the inheritance role are used to determine the new slot values. Then the

AfterChanged monitors run, once again filtered by level and in priority order.
These monitors get the old and new values. They have no direct effect on the slot
value. However, by executing the appropriate side effects, such monitors can
start the whole cycle again. Various flags on monitors determine if the monitor is
run on a set/add operation that doesn't actually modify the value in the slot
(because of redundency), on monitor attachment, on application load, and so
forth.

WhenNeeded monitors run on value retrieval. There is a similar filtering by

level and ordering by priority. WhenNeeded monitors can modify the value ap-
parently retrieved. Facets do not have monitors.

Monitors are useful for activities such as checking the type of new values,
coercing new values to an appropriate type, recording statistics on slot usage,
maintaining relationships among slots, keeping a graphic display synchronized
with a slot value, debugging, performing a functional translation of values, and
making complex computations (such as running a model) appear to be simple
value retrieval.

3.4 Object-oriented programming

Object-oriented programming (OOP) centers on the ideas of (1) identifying par-
ticular individuals (data structures) as objects, and (2) providing a uniform inter-
face to behavior that can vary by individual. True object-oriented programming
allows dynamic binding: the behavior associated with a particular program vari-
able is not known at compilation. Of course, in ProKappa, the objects of OOP are

the knowledge-base objects. Varying behavior is achieved by a simple trick: we
make the value of a slot be a function, and interpret a message to an object in-
dexed by that slot name as the application of the function in that slot to the object,
slot, and remaining arguments of the message. Since this is C, such functions are
in the global context; they run without the benefit of an Ada or Lisp-like enclos-
ing environment. (In Ada, as we shall see, functions are not objects and this be-
comes more difficult to achieve.) Unlike KEE, ProKappa lacks method combina-
tors; unlike SmallTalk, there is no primitive send-super, though one could be
written at the user level. Because message handlers are stored as slot values,

methods inherit through the object hierarchy.

Object-oriented programming in AI systems contrasts with more conven-
tional programming language notions of OOPDAI approaches provide greater
flexibility (for example, the ability for objects to dynamically change message
handlers or even dynamically change class). ProKappa accomplishes this by im-

plementing all objects uniformly and providing specific accessing functions to
the parts of an object. With the appropriate indirection, even this can be avoided
[Filman86].

12
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3.5 Miscellaneous facilities

ProKappa provides procedures for saving the state of an object system and
reloading saved states. In this respect, applications and modules are modular--
they can be saved and reloaded independently. ProKappa also has facilities for
source and version management--the equivalent of Unix make files for remem-
bering the components of an application.

The hierarchical nature of the ProKappa type system constrasts with the
flatter structures of a conventional language like C. As C lacks mechanisms such
as Ada's overloading, C written for ProKappa turns out to be quite dense in casts.
To alleviate this problem, ProKappa includes a Happy C preprocessor, which takes
a C program and inserts the appropriate casts (and coercions) for arguments.
Happy C also includes a quoting character that allows the simple specification of
constant symbols, lists, and arrays.

3.6 ProTalk

A fundamental result of programming language design is that language con-
structs should express intent. Often in AI, the intent is to express quantified
statements of a general form of "when this happens, this should follow." In clas-
sical AI systems, this has been realized with rule based programming. (Rules are
used frequently enough in AI that some confuse AI with rule-based program-
ming.) However, often intent in AI matches conventional programming struc-
tures-sequencing, conditionals and iteration. This section describes ProTalk, a

ProKappa language that melds rule-based and imperative programming.

Conceptually, rule based systems are founded on pattern-action program-
ming. A rule implements a pattern-action pair. When the pattern matches the
situation, it is appropriate to execute the action. Rule languages leave open
whether the pattern-actions express truth (when this is true, conclude the
following) or programs (when this happens, do the following.)

A pattern-action programming language has two important characteristics
that separate it from a conventional language. The first is the need to describe
patterns. The second centers on the issue of conflict resolution: what to do when

several patterns simulateously match. The semantics of a particular pattern-ac-
tion language may range from requiring this choice to be made non-determinis-
tically through specifying complex rules for ordering the rule selection.
Whatever point is chosen on this continuum, this conflict resolution problem in-
troduces considerable intellectual complexity to the programming process.

Thus, rule languages are a two-edge sword. They allow "atomization" of
knowledge (the independent assertion of separate facts), the assertion of univer-
sally quantified statements, and free the programmer from concern for control
structures and sequencing. However, they present a the non-deterministic se-
mantics, introduce unanticipated interactions between elements of the atomized
knowledge, require considerable effort in establishing context for each atomic
knowledge element [Bachant89], and demand circumlocutions and idioms to obtain

conventional control patterns such as loops and conditionals. Examples of rule
languages include Prolog [Clocksin84] and OPS5 [Brownston85]; almost every AI
tool has a rule language of some form.

13
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Because rules have some of the mathematical semantics of if-then-else, rules

can be run (chained) either in a "forward" or "backward" direction. Forward
chaining requires following all the consequences of an assertion. That is, if we
have rules that state

ira then B, (1)
and

if B then C, (2)

then a forward chaining system will, on the assertion of A, conclude B (using rule
1), then conclude C (using rule 2). OPS5 is example of forward chaining system.

Backward chaining involves reasoning from a consequence to the conditions
that cause that consequence. Thus, we could backward chain with the rules given
the question "is C true" to the conclusion that A's truth implies C's truth. Prolog is
an example of a backward chaining system. Some systems allow mixed chaining--
it is possible to invoke forward chaining while back chaining, and visa versa.
Our course, our A, B, C example simplifies the problem, as most rule systems allow
variables for the patterns A, B, and C, and much of the search involves finding
bindings for the pattern variables that satisfy the rules.

Rule systems also differ on whether they are "always active" or "invoked."
In always active systems, the rule-based consequences of any assertion that af-
fects a rule are always followed. The advantage of always active systems is that
since all knowledge-base assertions are noticed by the rule system, one can build
more efficient algorithms for the rule mechanism (such as RETE [Forgy82]).
Invoked systems require specific rule system invocation. Invoked systems re-
quire a programmatic control, but allow restricting search to only relevant rules.
This results in more straightforward control structures and often, greater effi-

ciency.

There are three primary ways of implementing rule languages: interpreters,
compilation to a network, and compilation to an abstract machine. Interpretation
(used, for example, in KEE) requires an engine that successively examines appro-
priate rules in turn and explicitly executes a rule coherently. This requires little
additional storage, and allows invocations of subsets of all rules. However, it is not
as directly efficient (in a raw-machine sense) as compilation mechanisms. The
RETE mechanism compiles rules to a network, progressively advancing tokens
through that network as portions of rules are matched. This is perhaps the most
efficient way of implementing a collection of rules, but can have large space re-
quirements, works only for forward-chaining, and does not readily lend itself to
rule subsets. Abstract machine compilation effectively treats rule languages as
would a conventional compiler, treating the sequence of instructions as requir-
ing movement of data between locations. Abstract machines typically have
primitives for pattern matching and storing the search context of the rule sys-
tem. Compilation to the Warren Abstract Machine (WAM) is the standard strategy

for implementing Prolog systems [Warren77].

The goal of ProTalk is to span the continuum between conventional lan-
guages and rule languages (and, in that process, to integrate with the frame sys-
tem). That is, ProTalk seeks to let the programmer say in conventional constructs
those things that are best say with conventional constructs, but to include built-

in pattern matching and rules. ProTalk in this respect traces its intellectual roots
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to Planner [Hewitt71], which extended Lisp with pattern-matching and search
constructs.

ProTalk relies on the following fundamental concepts:

Rules and functions. ProTalk subprograms are either functions (with pa-
rameters, returning values), forward chaining rules, or backward
chaining rules. Rules are divided into condition and action parts; the
condition is typically a series of expressions to be matched. In general,
all ProTalk operators are available in any context.

Variables. Variables in ProTalk are neither declared or typed. (Typing is
avoided as all are of type ProType.) Variables are initially unbound.
Evaluating an expression containing unbound variables is effectively a
request to find a binding that matches the variables. Subsequently (in
that subprogram or rule), the thus bound variables take the value of
this binding (until rebound or assigned.) ProTalk in this respect re-
sembles Prolog. However, unlike Prolog, one cannot bind together two
unbound variables.

Success and failure. Like ProLog, ProTalk incorporates a notion of suc-
cess and failure. A ProTalk program is a series of statements. Each
statement either succeeds or fails. Typical failures include the inability
to find a binding for a variable or a false evaluation of a Boolean
expression in a non-testing context. Failure backtracks to the last
choice point (place where there were multiple ways of getting an
answer) and considers the next choice. Success proceeds to next
statement. In functions, choice points must be created explicitly (using
the find operator). Rules have an implicit find before all statements;
hence, rules may create many choice points. Unlike ProLog, in ProTalk
one can mix conventional control constructs, such as assignment,
if/then/else, for/while, iteration over lists and into accumulators, in
functions and rules.

ProTalk and ProKappa. ProTalk is effectively connected to the core--there
are primitive operations for changing/inquiring about class/member
links, slot and facet values. (Unfortunately, the semantics of ProTalk
operations can depend on the multiplicity of slot inheritance roles.)

The following is an example of a ProTalk function, CslResetForRules. It takes
two arguments, ?self and ?slot. It starts by setting the Pressure slot of the object
tt2Source to the symbol Normal. It continues by looping through each child sub-
class of the object Subsystem (?X), looking in the SubsystemProblem slot of that
child. It removes any value it finds. It then loops through all the descendants of
the class components, binding them successively to the variable ?Unit. For those
that are not in the specified list of exceptions, it sets the value slot of the ?unit to
the symbol N o rma 1. It concludes by running the rules in the set of
CoolingTestProcedureRules to fmd values of the FaultyComponent slot of the object

Ca_l, printing out a message for each.
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function CslResetForRules {?self, ?slot)

{
H2Source.Pressure - Normal;

for ?X inlist a11 direct subclassof Subsystem;

do

for {find ?X.SubsystemProblem -= ?sp; }
do
{

?X.SubsystemProblem --- ?sp;

l

/* Set Component Value */

for ?Unit inlist all instanceof Components;

do

{
if Member (?Unit, " (El@, E2@, E3@, E4@, E5@, E6@, I1@, WI@))

-- FALSE;

then

?Unit.Value - Normal;

for ?component -

find [ CoolingTestProcedureRules ] Cs_l.FaultyComponent;

do {Print ("\nA faulty component is ") ;

Print {?component") ;

l

This function is intended to be called with ?self and ?slot bound. Calling a
function with unbound variables allows the function to act as a generator--suc-
cessive calls, within the context of a search, produce new bindings for the un-
bound variables. When all bindings have been exhausted, the function call itself
fails. ProTalk requires that all parameters to a functions must be bound on func-
tion exit.

The following is an example of a ProTalk rule--a backward chaining rule, to
be more precise. It specifies an immediate rule class for the rule
(AllLowAll EsShortRules). (Rule classes can themselves be built into directed

acyclic graph_, though rules do not correspond to particular objects in the object
system.) This rule "means" that if a component (?comp) value is (the symbol) high,

and a sensor of that component (?sen) has a high Trend, then the component's
ComponentFailureType slot is tO have the value ReadsHigh added to it, and the com-
ponent's FaultState slot is to be set to UncorrectedFault. The function
RespondToHighSensor is then run on component. Used in a backward chaining
fashion, this rule can be understood to mean, "if one is looking for something
with ReadHigh in its ComponentFailureType slot, or UncorrectedFault in its
FaultState slot, then establish that that thing has High in its Value slot, and it's
sensor slot contains an object that has High in its Trend slot." If a rule succeeds,

the rule itself is run, causing execution of the function RespondToHighSensor on

the component.
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bcrule DiReadsHighRule in AllLowAll_EsShortRules
{

if:

?comp.Value -- High;

?comp. Sensor -- ?sen

?sen.Trend -- High;
then:

?comp.ComponentFailureType +-= ReadsHigh;

?co_.FaultState - UncorrectedFault;

RespondToHighSensor(?comp);

3.6.1 Syntactic detail

Having specified the intent and examples of ProTalk, we now descend to its spe-
cific syntactic detail.

ProTalk has constants that correspond to the constants of the subtypes of

PrkType. In general, a free identifier corresponds to the symbol of that name;

followed by an @, it denotes the object of that name. Symbols can also be back-

quoted ("); backquoting a string creates a symbol with an arbitrary name. The
dipthong "! denotes a method. The syntax for numbers, characters, and strings

follows the usual C-language notation. Prefixing an identifier with ? (e.g. ?foo)

creates a named variable; ? by itself is an anonymous variable, in the Prolog

sense. ProTalk freely coerces symbols to objects when a symbol is used in a con-
text that requires an object.

Lists are created by backquoting as sequence in parentheses: commas sepa-
rate list items, and I can be used for dotted-notation. For example " (Foo, BazO,

?X I ?Y) is the equivalent to the effect of the Lisp evaluation of (cons symbol-foo

(cons object-baz (cons variable-x variable-y)))) -- i.e. (Foo Baz@ ?X ?Y). Arrays
follow a similar notation, substituting square brackets for parentheses.

Expressions are created using operators and parentheses. Common operators

such as + and < are included; additionally, the language has about two dozen

operators with special meanings. The most elementary are those for accessing
the object system; these are listed in Table 1. Such expressions can be nested by

use of parentheses.

Slot value

Facet value

Instance children of a class
Instance descendants of a class

Subclass children of a class

Subclass descendants of a class

Class parents of an instance
Ancestors of an instance

Class parents of a class
Class ancestors of a class

Table 1: Templactes

{Object}. {slot}
{Object}. {slot}.. {facet}
direct instanceof {class}

instanceof {class}

direct subclassof {class}

subclassof {class}

direct classof {instance}

classof {instance}

direct superclassof {class}

superclassof {class}

for knowledge expressions.
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Information in the object base can be modified by use of the assignment
("-"), addition (+--) and deletion (---) operators. Thus, air_exchange, symptom +--
?problem specifies that the value of the variable problem is to be added as a value
of theslotsymptom on theobjectair_exchange. ?problem - air_exchange, symptom

specifies that the variable problem is to be bound to a value of air_exchange's

symptom slot. An expression which accesses the object base is called a knowledge
expression (KE).

KEs can accept search modifiers. These are specified in Table 2. Note that
some of these modifiers are deterministic while others are non-deterministic.

No modifier

All

Findl

Find

Generates a single value; unknown
if no value.

Generates a list of values; nil if none.
Generates a single value; fails if

none.

Generates one value at a time, acting
as a generator. Pails when it runs

out of values.

Deterministic

Deterministic
Non-deterministic

Non-deterministic

Table 2. Knowledge expression modifiers.

Non-deterministic operators can be modified by "sum", "collect" or "count" tO
sum, collect into a list, or count the instances that match them.

ProTalk has the usual complement of (C-syntax) binary relations: - -

(equality; match), >- ... !-. The match operator, --, can also be used for pattern-
matching on lists (much like ProLog). For example, if ? first and ?rest are
unbound and ?AllEs is bound to a list, on executing

?AIIEs -- " ( ?first I ?rest );

? fi rst will be bound to the car of that list, and ? re st, to its cdr. If, on the other

hand, ?first were also bound on execution, then either (1) ?rest would be bound
to the cdr of ? A 1 1 E s if ? f i r s t was the same as the car of ? A 1 1 E s, or (2) the state-
ment would fail.

ProTalk has conventional if/then and if/then/else statements. The success
of an if/then/else statement is the success of the chosen branch; the success of an
if/then statement with a true condition is the success of the then part; an if/then
statement with a false condition always succeeds. (A case statement can be used as

a compact syntax for repeated if/then/else's. For example,

if ?textitem -- Low;

then

{
if ?item > ?last;

then

{
return (TRUE);

l
l
else
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return (Islntermittent (?textrest, ?rest, ?last));

ProTalk has an extensive collection of iteration operators, including itera-
tion through the elements of a list or array (i n 1 i s t and i n a r r a y), and numeric
counter (from/to). For example,

for ?X inlist " (El@, E2@, E3@, E4@, E5@, E6@);

do

if ?Unit -- ?X;

then

?Temp - ?Value;

else

?Temp - ?X.Value;

Iteration operators (or simply statements under a find) can be combined
with accumulators to sum or count the items in a set, or build a list of the items of

a set. For example,

for find ?total - count; ?filter.value -- high

The bound operator tests to see if its variable argument is bound. The state-
ment "bound inputs;" is an assertion that all the parameters of a function are
bound. The return operator can be used to immediately return a value from a
function.

Syntactic escapes exist for calling a library of ProTalk functions that corre-
spond to the functions of the ProKappa core and for inserting C code directly into
a ProTalk application. ProTalk also includes an extensive library of built-in
functions, which correspond to most of the core functions and a small mathemati-
cal library.

A ruleset is a collection of rules which are to be run together. The declara-

tion of a rule requires placing it in a single, direct ruleset. Rulesets can be subsets
of other rulesets; rules are run with respect to a particular rnleset (or the current
ruleset, if there is one.) Thus, by being in a ruleset that is a subset of several
rnlesets, a given rule can be in a multiple rulesets. A rule may include an op-
tional priority, which is used in the conflict resolution phase of rule execution.

Forward chaining is invoked with the assert operator. The assert statement
can specify a ruleset. Assert runs these rules only if the fact new; the assert!
operator always runs the specified rules. Backward chaining is invoked with the
find and find1 operators. These take an optional ruleset, and seek values to in-
stantiate the following statement. Find1 resembles the Prolog cut in that it only
finds the first matching value.

Additional operators particular useful in chaining include the local opera-
tor, which specifies that the following statement is not to be used as an entry for
chaining, the fail statement, which causes immediate failure, the succeed state-
ment, which always succeeds, the test operator, which succeeds only if its argu-
ment evaluates to a non-false value, the or operator, which succeeds when one of
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its following succeeds, and the retry statement, which restarts backtracking with

respect to the first choice.

Functions are declared with respect to a set of named parameters.

like rules, can retain their state and be called non-deterministically.

Functions,

3.6.2 Implementation

ProTalk is implemented by compilation into C code that realizes an abstract

machine, much like the ProLog Warren Abstract Machine. We won't go into detail
on the behavior of this system, as we discuss the PrkAda abstract machine, below,

except to note that: (1) The C implementation is eased by the ability in C to store

pointers to actual functions. This must be faked in Ada. (2) The Ada implementa-
tion uses more flexible data structures, enabling us to ignore certain artificial

limitations in the C system (e.g., the number of local variables in a function), and

(3) we will be devoting greater attention to code optimization in the PrkAda
version.

4. Core status

This section describes the current (alpha) core implementation. This corresponds
to the substrate manager and the object manager, with a hooks for the runtime

rule system. We are describing the alpha version. In that version, we attempted

to by and large achieve same functionality as development ProKappa. In this

section we also note those decisions we now consider mistakes. Appendix A lists
the known incompatibilities between ProKappa and PrkAda. The alpha core is

about 10K lines of Ada (counting semicolons; 20K, counting end-of-line charac-
ters).

4.1 Datatypes

The alpha core implements the PrkType datatype as an Ada pointer to a variant

record. The enumerated type K TYPE represents the discriminent type of the vari-

ant; it has the following elements:

type KTYPE is (CLASSP,

INSTANCEP,

METHODP,
BOOLEANP,

MONINFOP,

ORIGINSLOTP,

LOCALSLOTP,

INHERITEDSLOTP,

UNIONSLOTP,

SYMBOLP r
CONSP,

STRINGPr

BLANKP,

ARRAYP,

-- class objects

-- instance objects
-- methods
-- booleans

-- monitor information

-- origin slots--slots that contain

-- originally introduced material
-- local slots-slots with local
-- values

-- inherited slots-slots with

-- no local information

-- union slots-slot of inheritance
-- role union

-- symbols
-- cons cells

-- strings

-- the unknown symbol

-- arrays
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INTEGERP,

FLOATP,

DOUBLEFLOATP,

CVALUEP,

SLOTREFERENCEP,

RAWS LOTDATAP,

RAWFACETDATAP,

CHARACTERP,

EmptyArrayCellP

);

-- integers
-- single-precision floats

-- double-precision floats

-- arbitrary Ada values, coerced to

-- integers
-- slot references: object and slot

-- pairs
-- raw slot data: a description of a
-- slot

-- raw facet data: a description of a
-- facet

-- character

-- a special symbol for the unknown

-- array cell.

A record of this form is a "box"; a pointer to such a record is a "ptr." Note that

it is a failing of Ada that we cannot express the notion that an object is the union
of the classp and instancep dam_pcs, a slot a umon of the originslotp ..union-

slotp datatypes, or that a number is the union of the interp..doublefloatp

datatypes. (This could be done with a doubly discriminated record, but that would

require all boxes to be doubly discriminated; this limitation seems to be corrected
in the design of Ada 9X.) In retrospective: (1) It is unnecessary to allocate a spe-

cial type for unknown and empty array cells. A special value would have been

adequate. (2) It would, perhaps, have been better to have implemented the fun-

damental type as a varient record, may of whose fields would be pointers to more
complex data structures. The current implementation suffers from a need to re-

claim unused boxes. Making the data immediate for simpler types like integers
would save much of this effort. We are following this path in the beta version.

Another problem arises from using real Ada pointers--we have inadequate

control over the allocation of that storage. We plan, in the next version of this

system, to employ a BIBOP (big bag of pages) implementation, where the funda-

mental data type is a variant record which points, when unable to hold immediate
data, to a page of objects (all of which are the same kind) and to a particular object

on that page. This will prove useful for garbage collection, compaction, and
database activities.

4.2 Symbols

Symbols are a mapping from strings to unique data structures. Symbols are im-

portant (among other reasons) because we identify slots and facets by their sym-

bols, and use their symbolic names to access objects. The system gains consider-

able efficiency through comparing symbols rather than by doing character-by-
character string comparison. Achieving this efficiency requires developing a

symbol table package and converting the literal strings in code to symbols. In the

alpha version, this symbol table is implemented as a hash table. We used a

generic package for creating cascading hash tables--hash tables that keep con-
flicts within a bucket on a list. When a bucket gets "too full," the cascading mech-

anism replaces the bucket with a cascading hash table. This is probably not as

efficient, with respect to space, as rehashing the whole table but is more time
efficient.

21



IntelliCorp PrkAda Interim Report

4.3 Objects

Objects in PK can be named or anonynous. Named objects have a title; anonymous
objects a unique (for that application) number. All objects have a list of parents,
a set of slots, a module, a properties list, and various flags that indicate properties
such as whether the object is deleted, currently loading, a "system object", or an
application or module. Class objects also have lists of subclasses and member chil-
dren.

A critical function of an AI-style, object-system core is mapping objects and
slot names to the information associated with the object's slot. This is usually done

by have a single structure for each object (its slot table) and searching (with
hashing) that structure for the desired slot. In the alpha version of PrkAda, we
used a single global hash table, and hashed with respect to object, slot, and facet
(if any). (That hash table is of the cascading kind described for the symbol table).
This approach has advantages and disadvantages. In comparison to KEE, which
used a fixed-size hash table per object, with list buckets off the table, it is consid-
erably more space efficient, and not particularly less time efficient. However, it
has a tendency to scatter the definition of objects through memory. This can be a
disadvantage in a virtual memory system if the slot access pattern is localized with
respect to the objects. However, a more serious disadvantage of this scheme is the
difficult of performing certain optimizations without a well-specified object/slot
data structure. That is, we would like to reduce access to compile-time constant

slot names to array indices. This is hard to do with the alpha implementation. In
the beta core, we are reverting to a slot array per object organization.

4.4 Slots

All slots have a data structure that points back to the parent object, and a list of
facets. (The former of these is used only by the printing routines). Inherited
slots (those with no local information, other than facets) point to their providing
slot and object. All other slots have a set of values (or a single value). Origin slots
(places in the inheritance hierarchy where a slot is introduced) keep the signa-
ture of the slot and its slotname; others point to the origin slot, and, in the case of
union slots, keep their local values. (For the other inheritance roles, the com-
bined value is the local value).

4.5 Inheritance

ProKappa is a "push" inheritance system [Filman86]. That is, when parent values
change, this change is immediately propagated to all children. The algorithm
works by transversing the directed acyclic inheritance link graph. The primary
clevernesses of the inheritance system consist of (1) a mark phase where all ele-

ments of the subclass graph are marked, and (2) an update phase where we once
again transverse the graph, updating only those nodes with no marked parents.
This update process includes computing the new value of the object for the slot,
unmarking the object, and recusively updating all (member and subclass) chil-
dren of the object. Depending on the inheritance role, it may not be necessary to
mark or update the children of a particular object. This way, it can be seen that
each descendant of an object is updated exactly once.
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4.6 Methods

A major incompatibility between Ada and the Lisp/KEE/ProKappa style of pro-

gramming concerns functional (and procedural) objects. In Aria, functions are
not first-class data types. Subprograms cannot have function-valued variables.

(Ada provides the "generic" mechanism for varying behavior with respect to dif-

ferent procedures. Generics have the advantage of being handlable at compile
time, but lax flexibility [there are some very useful things you can do with func-

tions-as-data-values that you cannot do in plain Ada without resorting to Turing-

equivalence activities such as building interpreters] and can result in great code
expansion.) Our specification calls for being able to dynamically change the be-

havior of an object in response to a message. That is, by changing the method in

a slot, an object acquires a different response to that message.

To be able to call such functions at all in Ada requires creating a mapping

between the symbolic method constants and the actual Ada calls. We have taken

the following approach:

(1) The system user provides a package called methodfns, which embodies

all functions that might be called as methods or monitors.

(2) In the specification of methodfns is an ennumerated type MethodFn,

which is a list of all method names in the application (whether used for

messages or monitors, see below). One element of this datatype is the

constant No_Method. For example, from CSl_Fixer application, the decla-
ration is

type MethodFn is (

No_Method, -- in every declaration

Prk All Es Avput_method any,
PrCAvput H2_me thod_any,

Prk_Cs iResetForRules_met hod any,

Prk_I dent ifyCs IP roblem_method_any,

prk_I nit Sympt omsAi rSourceAvput_method_any,

Prk_I nit Sympt omsDIAvput_met hod_any,

.);

The funny names (Prk_ ... method_any) have been chosen for com-

patibility with the ProKappa P'roTalk compiler, and hence, ProKappa

knowledgebases.)

(3) The user supplies (accessible in the external specification, and imple-

mented in the body of MethodFna), the function Apply. CSl_Fixer's apply

is

procedure Apply (Fn : Methodfn;
X0,XI : in out Ptr;

X2,X3,X4,XS,X6 : Ptr;
Ans : out Ptr) is

begin
case Fn is

when no method ->
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ans :- blank;

when prk_All Es Avput_method_any ->

ans :-prk_All Es Avput_method_any (X0, Xl, X2);

when prk_AvputH2_method_any m>

ans :- prk_AvputH2_method_any (X0, Xl, X2) ;

when prk_CslResetForRules_method_any ->

ans :-prk_CslResetForRules_method_any (X0, xl);

when prk_IdentifyCslProblem_method_any ->

ans :-prk_IdentifyCslProblem_method_any (X0, xl);

when prk_InitSymptomsAirSourceAvput_method_any ->

ans :- prk_InitSymptomsAirSourceAvput_method_any

(X0, Xl, X2);

when prk_InitSymptomsDIAvput_method_any =>

ans :- prk_InitSymptomsDIAvput_method_any

(X0, X1, X2);

end case;

end Apply;

Immediately before the case statement in apply is a useful point for
printing an collecting debugging information--all messages and
monitor executions pass through this point.

(4) The specification of MethodFns also includes an instantiated generic
(with functions renamed) for accessing the string names of methods--It
allows mapping from the string "Prk_All Es Avput_method_any" tO the
MethodFn Prk_All Es Avput_method any. It also provides several ver-
sions of the apply function.

The efficiency of this scheme depends on the Ada compiler. If the case
statement is compiled into a dispatch from a table, then the additional overhead of
a message send is roughly the cost of a slot retrieval and the cost of stacking the
unused parameters and an index into the dispatch table. (This is the behavior of
DEC VAX Ada). If the case statement is compiled as a series of conditional state-
ments, then the cost of a message will be proportional to the number of different
methods in the system. This can be alleviated by (1) ordering the method func-
tions by frequency of use, and/or (2) building the apply function as a conditional
tree (using the else clauses of the conditionals). Unfortunately, our experiments
reveal that Verdix Ada on the SUN has this repeated conditional behavior.

4.7 Monitors

The monitor mechanism is perhaps the most complex part of the object manager.
Monitors fire under five circumstances:

(l) When a monitor is attached to a slot, the attach method of a monitor
fires. If certain flags are set in the monitor, the change method also
fires at this time.

(2) When a value is retrieved from a slot, a WhenNeeded monitor fires
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(3) BeforeChanged monitors fire when the value of a slot is modified.
BeforeChanged monitors fire before the slot modification. The effects of
their changes can be seen in the new slot value.

(4) AfterChanged monitors fire after slot modification.
the new slot value.

They do not effect

(5) Detach methods on monitors fire when a monitor is detached from a slot.

Some of the complexity arises in the current implementation because the
decision to run the Attach and Detach methods is distributed to the wrong points

in the code. The correct way of doing this is to modify the method inheritance
role. This will be the tactic taken in the next version of the system.

4.8 Loading and saving object bases.

We anticipate moving object-bases between ProKappa and PrkAda through the

ASCII object-base writer/reader mechanism. There are functions in PrkKappa for
creating an ASCII representation of an object-base, and a corresponding function

for reading in such a representation. For example, the following are a few lines

from the ASCII representation of the CS1-Fixer application.

Application Csl /* creating objects in application Csl */

Class Cs 1 /* create a class called Cs I */
/* Create a slot in Cs 1 called B_eakableComponents. This is an

Own slot with multiple-value override inheritance. The values

of this slot are the objects whose names are V2h2co2, V2h2, ...
AirSource. */

Own MVOverride Slot BreakableComponents -> Vlh2co2@, V2h2@, VI@,

T2@,
Rxl@, PEI@, MI@, H2Source@, Fv2@, Fvl@, Edcm@, DI@, AirSource@

/* Create a slot in Cs i called FaultyComponent. The initial
value of this slot is unknown. This slot has a facet called

Comment with the given value. */
Own MVOverride Slot FaultyComponent -> ?

Facet Comment -> "If more than one value, the value is a list

of the possibly faulty components"

/* Create a class Orus. Orus is a subclass of Cs_l, has own slot

FaultyOru, and default slots (that inherit)

Co_ponentFailureType, FailedOruComponent, and MemberComponents.
*/

Class Orus

Parent -> Cs 1

Own MVOverride Slot FaultyOru -> ?

Facet ValueClass -> Orus@

Slot ComponentFailureType -> ?
Facet Con_nent -> "This is the type of failure in the isolated

component identified in the
failed.oru.component slot"

MVOverride Facet ValueClass -> Obstructed, Leaking, Drifted,

FailedOn, FailedOff, Out0fPosition, HighCurrent
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Slot FailedOruComponent -> ?

Facet Comment -> "This is the component identified as faulty by

the troubleshooting"

MVOverride Slot MemberComponents -> ?

Facet ValueClass -> Components@

/* Create an instance V2h2co2. V2h2co2 is an instance of the

classes Valves and H2EdcmOutletGroup and has values for various

slots and facets. */

Instance V2h2co2

Parents -> Valves, H2EdcmOutletGroup

Slot Value -> Normal

Monitor Facet WhenChangedFacet -> Updateh2@

Slot RunTestProcedure -> RunV2h2co2CycleTest

Slot FaultState -> Ok

Slot State -> Open

MVOverride Facet ValueClass -> Open, HighPartialOpen,

NormalPartialOpen, LowPartialOpen, Closed

Monitor Facet WhenChangedFacet -> AvReverseVideo@

Slot OperatorBreak -> ?

MVOverride Facet ValueClass -> TemporarilyObstructed,

Obstructed

Monitor Facet WhenChangedFacet -> V2h2co2Mon@

Slot OutComponent -> H2Sink

/* Instance VIDecreaseCoolingDICorrectionProcedure has a method

slot RunProcedure! whose value is the MethodFn

Prk_RunVIDecreaseCoolingDiCorrectionProcedure_method_any */

Instance VIDecreaseCoolingDiCorrectionProcedure
Parent -> CorrectionProcedures

Slot Status -> NotDone

Slot ""RunProcedure!" ->

!Prk_RunVlDecreaseCoolingDlCorrectionProcedure_method_any

/* DIMon is a monitorl the monitor method is

Prk_InitSymptomsDIAvput_method_any. We could also specify at-

tach and detach methods, priority and level for the monitor. */

Monitor Instance DIMon

Parents -> ZNasaActiveValues

Method -> !Prk_InitSymptomsDIAvput_method_any

We have created procedures in Ada for reading and writing such object-base
descriptions. The reader is a single-pass algorithm that embodies a compiled
LALR (1) parse. That is, the reader can be in a number of different states, and,
based on a single token look-ahead, the values of a few global variables, and the
current state, progresses to the next state. As part of this state-to-state transition,
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the reader may take an action such as creating an object or giving a value to a
slot. The only trickiness of the object-base reader is that, as a single-pass algo-
rithm, it may encounter references to objects and slots (in the values of slots and
facets) before the object or slot itself has been defined. Unfortunately, since the
data structure that represents instances is different from that of classes, we can't
simply create the object on first reference. We handle this problem by creating
"indirect references" in slot values, remember where these indirect references

are, and patching the structures after all slots have been created. This also allows
us to read in several mutually-recursive object-base files simultaneously. The
reader includes a separate lexical package, which is capable of reading in single
box values; this lexical package is also used in the read-eval-print mechanism
described below.

The PrkAda output packages have routines for printing every kind of box.
The display routines have several different levels of display, including a display
for the ascii reader, a detailed display, and a "pretty" display.

4.9 Debugging tools

Having both reading and writing routines, it became a simple matter to write a
simple read-evaluate-print loop routine. This routine provides interactive access
to all user functions in the core and assignment to local variables. For the sake of

simplicity, it uses an "evaluate as you read" strategy, rather than reading the en-
tire input and then parsing it. This has the advantage that we can tune the read-
ing to the particular datatypes of objects required and provide immediate help on
the definition of each object, but the disadvantage (?!) that erroneous input may
partially evaluate.

4.9.1 Example interaction

Below is an example of the use of the system with the CS1-FIXER application. In

this example, the top-level program is simply a call to the read-evaluate-print

loop. Our typing is in boldface after the -> signs; comments are in braces and
italics. We have reformatted a few of the lines for the narrower screen width.

ASrun test_rep
-> 3

3
-> 3.141593

3.141593

-> foo

foo

-> help

{Evaluate some constants}

{Unbound symbols evaluate to themselves. }

Use & for quote; otherwise, symbols with assigned values and function

names evaluate; others are self-quoting.

Long_Help for full command list.
Command abbreviations are

ae array_elmt
afv add facet value

m

afvs add_facetvalues
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{Here we get a complete listing of the abbreviations available in the

read-eval-print mechanism. The reader is referred to Appendix B

for a complete list. }

-> long_help

Available con_uands are

add facet value

add facet values

adClist_t r_elmt
add value

{Once again the reader is referred to Appendix B for the complete
list.}

-> cons(l,foo) {foo is unbound, so it evaluates to a symbol}

( 1 . foo)

-> cons(l,cons(2,cons(3,nil)))

( 1, 2, 3)

-> setf (zzz, cons (2, 3) )

( 2 3)

-> zzz

( 2 3)

-> &zzz

zzz

-> yyy

YYY

-> setf (yyy, cons (yyy, zzz) )

(yyy, 2 . 3)

-> yyy

(yyy, 2 . 3)

-> setf (xxx, cons (A, serf (xxx,

(nested expressions}

{bind zzz to the result of the cons}

{now zzz is the cons cell}

{quote zzz}

{unbound symbols evaluate to themselves.}

{pun }

{Yes, it's there}

cons (12, nil) ) ) )

{serf itself evaluates}

(A, 12)

-> setf(app, make_app("TheApp")) ;
{Okay, make an application called "TheApp". Bind app to it. }

TheApp@ SystemApplication

-> setf (C,make_obJact (

{Bind to C a newly created object called ClassObj. The phrases in

[] are the system's parameter prompts. }

[Object]

ClassObJ

f

[Module ]

app,

[pa rent s ]

nil,

[raw_slot_data ]

nil,

[instancep]

false) ;

***** Missing comma {Oops, a syntax error. }

Exception: Missing closing parenthesis , location: 86.

-> C

{But in this strange environment, it's after the facet, so C has
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been bound.}

ClassObj@

-> make slot(

[Object]

C,

[Slot Name]

"TheSlot",

[Raw Slot Data]

nil,

System exception.

-> find slot(C,TheSlot);

{Look for it under the wrong name.

find slot

(C, TheSlot)

-> is slot(C, TheSlot}

FALSE

{Make a slot on ClassObj}

The system interprets this as a

plain symbol and a list.}

{Try the right name. }

-> make_slot (C,TheSlot,mrsd( (I, 2,xxx,yyy) ,MVOver,

{Looks like the syntax error killed the last make slot.
Try _gain. }

[facets/() ]

-> get_values (C, TheSlot) ;

{Inside a list, the symbols were not evaluated.

( 1, 2, xxx, yyy)

-> ms(

[Object]

C, S,mrsd (cons (3, xxx) ,

-> display (C)

Class ClassObj@

We need to have them

at the top level.}

{Make another slot, S, using the value of xxx.}

SelfFizstUnion, nil))

{Show the object in C}

SelfFirstUnion Slot S -> 3, A,

MVOverride Slot TheSlot -> I,

-> mo (Child, TheApp,

[parents]

(C) ,

[raw_s lot_data ]
nil,

[instance_p]

true) ;

Exception: Child Of nonclass

-> mo (Child, TheApp, (ClassObJ@),

Child@

-> ddisp (Child@)

Child@

Module: TheApp@SystemApplication

Parents: (ClassObj@)

Object kind: ORDINARY_OBJ

Is deleted? : FALSE

Is system?: FALSE

Properties: (]

12

2, xxx, yyy

{Make another object, get an error.}

, location: 50.

nil, true) {Do it right}

{Show the inheritance in Child@}

Default SelfFirstUnion Slot S [UNIONSLOTP from: ClassObj@] ->

12

Default MVOverride Slot TheSlot [INHERITEDSLOTP from: ClassObj@]

-> I, 2, xxx, yyy

3, A,
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-> add value(Child@,S, 22) {Add 22 to Child@'s S slot.}

-> avs (Child8, TheSlot, (A, B, Child@) )

{Add two symbols and an object to Child@'s TheSlot slot. }

-> ddisp (Child@} {Show Child@}

Child@

Module: TheApp@SystemApplication

Parents: (ClassObj@)

Object kind: ORDINARY_OBJ
Is deleted? : FALSE

Is system? : FALSE

Properties: ()

Default SelfFirstUnion Slot S [UNIONSLOTP from: ClassObj@]

-> 22, 3, A, 12

Default MVOverride Slot TheSlot [LOCALSLOTP from: ClassObj@]

-> A, B, Child@

-> load("Csl.txa") {Load the Csl_Fixer knowledge base}

Csl@SystemApplication

-> ddisp(V2h2co2@) {Show one of the objects in that knowledge base.}

V2h2co2@

Module: Csl@SystemApplication

Parents: (Valves@, H2EdcmOutletGroup@)

Object kind: ORDINARY_OBJ
Is deleted?: FALSE

Is system?: FALSE

Properties: ()

Default Override Slot ComponentFailureType [INHERITEDSLOTP

from: Orus@] -> ?

Default Override Slot ControlConnection [INHERITEDSLOTP from:

Components@] -> ?

Default Override Slot FailedOruComponent [INHERITEDSLOTP from:

Orus@] -> ?

Default Override Slot FaultState [LOCALSLOTP from: FaultStateClass@]

-> Ok

Default Override Slot InComponent [INHERITEDSLOTP from: Components@]

-> ?

Default Override Slot Line [INHERITEDSLOTP from: Components@] -> ?

Default MVOverride Slot MemberComponents [INHERITEDSLOTP from:

Orus@] -> ?

Default Override Slot OperatorBreak [INHERITEDSLOTP from:

ControlComponents@] -> ?

MVOverride Facet ValueClass -> TemporarilyObstructed,

Obstructed

Monitor Facet WhenChangedFacet -> V2h2co2Mon@

Default Override Slot OutComponent [LOCALSLOTP from: Components@] ->

H2Sink

Default MVOverride Slot RunTestProcedure [LOCALSLOTP from:

Components@] -> RunV2h2co2CycleTest
Default Override Slot State [LOCALSLOTP from: ControlComponents@] ->

Open
MVOverride Facet ValueClass -> Open, HighPartialOpen,

NormalPartialOpen,

LowPartialOpen,

Closed

Monitor Facet WhenChangedFacet -> AvReverseVideo@

Default Override Slot Value [LOCALSLOTP from: Components@] -> Normal

Monitor Facet WhenChangedFacet -> Updateh2@
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-> dlsp(Diagnose@)

Class Diagnose@

{Show another}

Own Method Slot Identify! -> !PRK IDENTIFYCSIPROBLEM_METHOD_ANY

Own Method Slot Reset! -> !PRK_CS[RESETFORRULES_METHOD_ANY

Facet Comment -> "Reset the kb for fault diagnosis ie., it

puts unknown in all unit slots set by

fault diagnosis rules"

Facet ValueClass -> Method

Own Method Slot Show! -> !PRK_SHOWBREAKABLES_METHOD_ANY

-> send(Diagnose@, Reset!)

{Try it out! Send diagnose a reset message.}

System reset to normal operating conditions

()
-> set_value (V2h2co2@, OperatorBreak, Obstructed} ;

{Break something-say, obstruct V2h2co2. }

Fault entered.

-> send (Diagnose@, Identify ! }
{Try to diagnose the problem. What follows is the program output.}

Faulty component detection report

Suspected faulty component(s)

Component V2h2co2@ in ORU Fca@ failed Obstructed

Component Prl@ in ORU Fca@ failed Obstructed

H2 subsystem has problem: LowH2Flow()

-> ddisp(V2h2co2@)

V2h2co2@

Module: Csl@SystemApplication

Parents: (Valves@, H2EdcmOutletGroup@)

Object kind: ORDINARY_OBJ
IS deleted?: FALSE

Is system?: FALSE

Properties: ()

{Display V2h2co2 again.}

Default Override Slot ComponentFailureType [LOCALSLOTP from: Orus@]

-> Obstructed

Default Override Slot ControlConnection [INHERITEDSLOTP from:

Components@] -> ?
Default Override Slot FailedOruComponent [INHERITEDSLOTP from:

Orus@] -> ?
Default Override Slot FaultState [LOCALSLOTP from: FaultStateClass@]

-> UncorrectedFault

Default Override Slot InComponent [INHERITEDSLOTP from: Components@]

-> ?

Default Override Slot Line [INHERITEDSLOTP from: Components@] -> ?

Default MVOverride Slot MemberComponents [INHERITEDSLOTP from:

Orus@] -> ?

Default Override Slot OperatorBreak [LOCALSLOTP from:

ControlComponents@] -> Obstructed
MVOverride Facet ValueClass -> TemporarilyObstructed,

Obstructed

Monitor Facet WhenChangedFacet -> V2h2co2Mon@

Default Override Slot OutComponent [LOCALSLOTP from: Components@]
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-> H2Sink
Default MVOverride Slot RunTestProcedure [LOCALSLOTP from:

Components@] -> RunV2h2co2CycleTest
Default Override Slot State [LOCALSLOTP from: ControlComponents@]

-> Open
MVOverride Facet ValueClass -> Open, HighPartialOpen,

NormalPartialOpen,
LowPartialOpen,
Closed

Monitor Facet WhenChangedFacet -> AvReverseVideo@
Default Override Slot Value [LOCALSLOTP from: Components@] -> Normal

Monitor Facet WhenChangedFacet -> Updateh2@
-> exit {Bye.}

5. Compiler status

We are developing a compiler for the logic programming language ProTalk. The
compiler is designed to produce executable Ada programs. The compiler knows
little about primitive operations and data structures, but rather concentrates on
general issues of environment and control. Instead of having a specialized
knowledge about a large number of constructs, the compiler handles only a small
set of operations which reflect the semantics of the lambda calculus. It achieves
this simplification by using an intermediate language which is closely related to
the LISP dialect SCHEME.

Existing approaches to compiling logic programming languages are based on
the Warren Abstract Machine, which directly supports high-level logic

programming operations. Building these operations into the base machine makes
it difficult to implement a wide variety of program optimizations. In addition, the
use of idiosyncratic program semantics has isolated logic programming compiler
technology from the main stream of compiler research. In contrast, we have
developed a generic approach to compiling high level logic programming
constructs within a framework which has already been applied to a variety of

programming languages.

The PrkAda system is designed to deliver a complete ProKappa application in
an Ada environment. As PrkAda compiler is not incremental, it is not an
appropriate tool for the development of ProTalk programs. The commercial
ProTalk compiler and C-based ProKappa development environment serve that
purpose. By having the complete application available, the PrkAda compiler is
able to perform global analysis and optimization of ProTalk rules and functions.
Later we show how global optimization techniques to support efficient application

delivery in the PrkAda run-time environment.

In the following sections we will discuss the most important features of
ProTalk from the perspective of compiler design. We will describe the program
analysis and code generation techniques used in the PrkAda compiler and present
the compiler architecture, briefly describing the purpose of each pass. Finally
we will conclude with our plans for future work.

5.1 Programming Language Issues

From a compiler design perspective, the most interesting features of ProTalk are
its support for logic variables, nondeterministic backtracking, and pattern-
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directed invocation. We will show how the PrkAda compiler handles these
features as well briefly discuss some the alternatives we considered. There is
brief description of ProTalk in this report; the reader is referred to the ProTalk
ReferenceManual for detailed information about the ProTalk language, its syntax,
and semantics.

All compilers replace programming constructs in a source language with
equivalent constructs in a target language, choosing those target constructs
which provide the greatest efficiency. All compilation at some point exercises the
primitive operations of the target, "underlying machine." For conventional
compilers that compile to machine code, "integer addition" and "floating point
multiplication" are examples of such operators. The ProTalk compiler treats the
PrkAda core routines as part of its target machine model. Hence, the compiler
freely uses the routines, such as list processing and slot storage, provided by the
core.

Another difference between ProTalk and Ada is their respective typing
disciplines. Ada is a very strongly typed language whereas ProKappa is very
weakly typed and relies heavily on run-time type checking. Again, the PrkAda
run-time core handles this difference between the languages by supporting run-

time type checking with a universal data type called "box" which encapsulates the
raw ProKappa data with a corresponding type tag.

In general, neither data types (such as lists or objects) or ordinary control
logic pose any problems for the PrkAda compiler. All data structures issues are
handled by the PrkAda run-time core and any conventional control logic can be
easily translated into Ada. However, there is no direct support in the PrkAda
target language for the language abstractions of backtracking, pattern-directed
invocation, and logic variables. The implementation of backtracking in Ada is
further complicated by the fact that Ada does not support function pointers,
unlike languages such as C or Lisp.

5.1.1 Pattern-directed invocation

The ProTalk language includes both a backward and forward chaining rule
facility. The actual chaining of one rule into another is essentially a function
call mediated through a pattern matching mechanism called unification.
However, whereas an ordinary function will have a unique set of parameters, a
rule may have multiple sets of parameters. This is because each entry point in a
rule defines a potentially distinct set of parameters. For example, consider the
following ProTalk rule:

bcrule DummyRule in DummyRules

I
if:

?comp.Value -- High;

?comp. Sensor -- ?sen;

?sen.Trend -= High;

then:

?comp.ComponentFailureType +-- ReadsHigh;

?sen. Status - Normal;

}
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The two statements in the "then" clause are both potential entry points to

DummyRule. If the first statement is matched then ?comp is the sole parameter of
the rule. If the second statement is matched then ? s e n is the parameter of the

rule.

It is in the first phase of the compiler that we make the parameters of a rule

explicit. We accomplish this by doing a global analysis of how the rules of an
application match up. Having done so, we generate a ProTalk function
corresponding to the entry point that is used. The newly created function is
computationally equivalent to the original rule. The only difference is that it has
a unique set of parameters. Note that since the PrkAda is designed to work in a
batch mode, there is no need to generate code for entry points that are not used in

an application.

5.1.2 Logic Variables

All variables in ProTalk are what we call logic variables. The term is borrowed

from the logic programming community. (In fact, ProTalk variables are restricted
relative to true logic variables such as Prolog). A reference to a logic variable is
like a reference to an ordinary variable with one important difference. When a
logic variable is unbound and is used in a predicate it becomes bound when the
predicate is computed, assuming that the predicate otherwise is true. For example,
given the following ProTalk predicate statement:

?comp. Sensor -- ?sen;

If ?sen is not bound when the statement is executed, then it acquires the

value of the expression ?comp. Sensor. In an conventional language (such as Ada)
it is never ambiguous as to which variables are the parameters of a program.

5.1.3 Nondeterminism

Nondeterminism is a technique for implementing search. We call an expression
nondeterministic when it selects its return value from a set of possible values,

using some arbitrary selection criteria. The idea is that it is the responsibility of
ensuing computations to determine if the value generated is "correct". If it isn't,
then control is returned to the generating expression and another value is
selected.

Like most serial logic programming languages, ProTalk uses a depth-first
approach to non-deterministic search. Each ProTalk statement in ProTalk can be
likened to a node in a search tree. The execution of a ProTalk program traverses
this tree in a depth-first manner. Whenever it is necessary to make a
nondeterministic choice, a "choice point" is created which captures the current
state of the computation, along with sufficient information to generate the "next"
value in the value set. Program control proceeds down the search tree until it is
determined that the most recent choice was incorrect. In that case control is
returned to the most recent choice point and the "next" value is selected. The

choice point is updated an control proceeds down the tree again. If a choice point
has no more values then it is discarded and the preceding choice point is visited.

This process of returning to the previous choice point is called "backtracking".
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Here is an example of backtracking in ProTalk taken from the ProTalk
reference manual. Here we seek an affordable Foil. Suppose that the class F o i 1
has three instances: FL1 whose Price is 1000, FL2 whose Price is200, and FL3
whose Price is 30. We now consider what happens when the following ProTalk
code is executed:

find ?x - direct instanceof Foil;

Print(?x, "is a foil");

find ?x.Price < i00;

Print(?x, "is an affordable Foil");

/* Sl */
/* S2 */

/* S3 */
/* $4 */

A choice point is created at S1 when it is first encountered. The execution of
S1 will select a value and bind the variable ?x to it. In this example, ?x will be
bound successively to the values FL1, FL2, and FL3. After each binding of ?x in S1,
statement $2 will be executed, followed by $3. If the test in $3 fails, as it does in
the first two cases, then control is returned to S1. When the test of $3 succeeds the
third time, control proceeds to $4.

5.2 Compiler Architecture

The PrkAda ProTalk compiler performs a series of transformations on an source
program which result in an equivalent but simpler program. Each transformed
program is simpler then its predecessor in one of two measures. Either it a uses a
smaller set of instructions or it is expressed in terms of instructions which are
more explicit (i.e. more primitive).

The transformations used by the ProTalk compiler are:

(1) Parsing and conversion to AST (abstract syntax tree).
(2) Preliminary ProTalk analysis.
(3) Conversion to PIL (PrkAda Intermediate Language).
(4) Intermediate analysis.
(5) CPS conversion.

(6) Environment analysis
(7) Code generation.

In (1), a textual representation of a ProTalk program is parsed and converted
into a set of objects which form an abstract syntax tree. Each object has additional
slots which are used by ensuing phases of the compiler for caching information.
During (2), a preliminary analysis is performed of the binding of logic variables
and the parameters of ProTalk functions and rules are made explicit. Phase (3)
converts ProTalk abstract syntax trees into equivalent intermediate program
trees. The intermediate forms are then analyzed for side effects and scoping of
ordinary variables (4). After slots have been populated by intermediate analysis,
a program is converted in (5) to CPS (Continuation Passing Style) form. As a
result, all control flow (including backtracking) is made explicit. In (6),
additional analysis of variable references results in the assignment of slot values
which support the code generation for environments. This results in making
variable environment processing explicit. Phase (7) takes the analyzed CPS
program and converts it into executable Ada.

The PrkAda compiler concentrates on issues of environment and control
constructs. Low-level issues concerning data structure manipulation are left to
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be handledby the Ada compiler. For example, an Ada compiler must have specific
knowledge about data structures such as numbers, arrays, and strings. The
PrkAda compiler knows little about such things, so we just pass them along as Ada
output code. We leave it the Ada compiler to determine how to implement
primitive data structures.

5.2.1 Parsing and Abstract Syntax Trees

The PrkAda compiler transforms a textual representation of a ProTalk program
into an abstract syntax tree (AST) in which each node of the tree is an object.
This is in contrast to using an ad hoc representation of a program. Because each
node of an AST is an object, we can apply a generic set of routines to access and
manipulate these structures. Our ProTalk parser is specified by a augmented BNF
grammar. The parser is automatically generated from the grammar by a YACC-
like facility.

As the parser operates on a program, it generates objects according to the
rules of the grammar. Each grammar rule, with its associated object definition,
specifies the types of objects to be constructed when the rule is applied. The
following is a simple example from the ProTalk parser:

PT-PLUS ::- [ lexpr "+" rexpr l builds PT-PLUS,

When this rule is applied it constructs an object of the type PT-PLUS and
assigns values to the slots "lexpr" and "rexpr". The object definition for IT-PLUS
has type definitions for the slots "lexpr" and "rexpr." Slot type definitions act as
constraints on the values which can be assigned to the respective slots.

5.2.2 Preliminary ProTalk Analysis

The primary function of this phase of the compiler is to disambiguate the binding
status of every ProTalk variable reference and to make explicit the parameters for
every ProTalk function. The ProTalk features of pattern-directed invocation and
logic variables make it ambiguous whether a given variable reference is bound
or unbound at compile time. There are three questions of interest with respect to
a variable reference. The first is whether it is an initial reference. The second

question is whether the variable reference is a parameter reference. The
parameters are the specified inputs of a ProTalk rule or function. The third
question of interest is whether a variable is bound or unbound. The answer to the
third question is related to the first two.

Only initial references to variables may be unbound. If an initial variable
reference is not a parameter reference is must be unbound. If an initial variable
reference is a parameter reference then its binding status cannot be inferred at

compile time without additional information. By doing a global analysis of the
call graph of the ProTalk rules and functions of an application, we are able to
propagate binding status information. As a result, we are able to minimize the
amount of run-time checking of variable binding status. By generating code for
each initial parameter reference, the PrkAda compiler is able to assign a
unambiguous binding status of either bound or unbound to all other logical
variable references.
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5.2.3 Conversion to Intermediate Language

A set of rewrite rules translate ProTalk programs into equivalent PIL programs.
The translation of ProTalk to PIL currently requires four passes. Conversion is

non-trivial because the compiler must perform control flow analysis to identify

backtrack program entry points and variable scopings.

Knowledge of variable scopings enables the next compiler phase to analyze a

program for side effects and to make all variable references explicit. The
identification of backtrack entry points are necessary for the CPS conversion

phase, in which the compiler introduces explicit control constructs.

The language we have chosen (called PIL) is a small subset of Scheme, a
simple yet powerful dialect of Lisp. Recent work on integrating logic

programming into Scheme has produced a simple, yet elegant formulation of

backtracking in Scheme. We have used that formulation in PIL. The result is a

language which is compact, capable of expressing the program control necessary
for backtracking, and whose clean semantics lends itself to program analysis and

optimization. The PrkAda compiler translates nondcterministic ProTalk programs

into equivalent PIL programs.

Here are the eight PIL primitive expression constructs and their meanings:

exp ::- constant-exp I var-exp I lambda-exp I letrec-exp I

if-exp i if-exp I set!-exp I call-exp

constant-exp ::- object

var-exp ::- identifier
lambda-exp ::- [formals body]

letrec-exp ::- [binding-list body]

if-exp ::- [expl exp2 body]

set!-exp ::- [identifier exp]
call-exp ::- [head arguments]

ccs-exp ::- call-arg

The following are auxiliary definitions.

call-arg ::- lambda-exp

body ::- exp
formals ::- identifier*

binding-list ::- [ (identifier exp)*]

head ::- exp

arguments :"- exp*

var-exp: An identifier reference.

constant-exp: A constant. Most languages allow numeric and st_ng

constants.

lambda-exp : A procedure.

if-exp: An IF statement. <expl> must evaluate to a boolean. If True <exp2> is

evaluated, else <exp3> is evaluated.
letrec-exp: This is used to define mutually recursive procedures.

call-exp: A procedure application. The head and arguments are evaluated,

then the evaluated head is applied to the evaluated arguments.

set-exp: An assignment statement. The <exp> is evaluated then the assignment

takes place.
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5.2.4 Intermediate Analysis

Intermediate analysis is composed of two distinct phases. The first is called
variable analysis. Its purpose is to make explicit the semantics of variable

references and to determine which variables are destructively changed, (i.e.

side-effected). Every programming language has implicit evaluation rules about

how a variable reference should be interpreted. For example, an ordinary

assignment statement has a l-value and a r-value. The 1-value is interpreted as
the location of the variable. The r-value is interpreted as the new contents of the

location. Intermediate analysis makes variable locations explicit, makes

assigning values to locations explicit, and makes the accessing of a variable

location explicit. This simplifies code generation by avoiding the need to
repeatedly re-examine the context of a variable reference. Once this analysis is

performed, the meaning of a variable reference never changes. The analysis of

variable references simplifies the task of determining which locations can be
side-effected. Knowledge of side-effects is necessary to determine if certain types

of code motion are permissible during optimization.

The other component of intermediate analysis is called code linearization.

The purpose of linearization is to transform a program into an equivalent
program in which the order of evaluation of all expressions is fixed and explicit

and all intermediate values are named (placed in temporary variables).

5.2.5 CPS conversion

Standard CPS conversion takes a program with procedure calls and returns and

returns an equivalent program with in which procedure calls never return. In
CPS form, each function call passes an additional parameter, a function called the

continuation. The continuation represents the next computation to perform.

Instead of returning, each function passes its result to its continuation. As a

simple example of CPS conversion, consider the append function in Scheme.

(lambda (x y)
(let rec

((append-fun

(lambda (x y)
(if (null x)

Y
(cons (car x) (append-fun (cdr x) y) )))))

(append-fun x y) ))

The long (PIL) form of this function is:

(lambda (x y)

(letrec

((append-fun

(lambda (x y)
(if (call null x)

Y
(call (lambda (tl)

(call (lambda (t2)

(call (lambda (t3)
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(call cons tl t3))

(call append-fun t2 y)))

(call cdr x)))

(call car x))))))

(call append-fun x y)))

The standard CPS convened form of this is:

(lambda (x y contl)

(letrec

((append-fun

(lambda (x y cont2)

(call null x

(lambda (t4)

(if t4

(call cont2 y)

(call car x

(lambda (tl)

(call cdr x

(lambda (t2)

(call append-fun t2 y
(lambda (t3)

(call cons tl t3 cont2)))))))))))))

(call append-fun x y contl)))

The following is a specification of standard CPS conversion algorithm in terms of
rewrite rules:

(cps-convert-lambda (lambda (<arg>*) <body>))

• (lambda (,<arg>* , <new-cont>)

,(cps-convert <body> <new-cont>))

(cps-convert <vat id> <cont>)

• (call ,<cont> ,<vat id>)

(cps-convert <constant k> <cont>)
_>

• (call ,<cont> ,<constant k>)

(cps-convert (letrec ((<id-l> <lambda-l>)

...

(<id-n> <lambda-n>))

<body>)

<cont>)

• (letrec ((<id-l> , (cps-convert-lambda <lambda-l>) )

(<id-n> , (cps-convert-lambda <lambda-n>) ) )

, (cps-convert <body> <cont>))

(cps-convert (call <vat id> <arg>*) <cont>)
I_>

"(call ,<vat id> ,<arg>* ,<cont>)

(cps-convert (call (lambda (<arg>) <body) <exp>) <cont>)
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• (call ,<cont> ,(cps-convert-lambda <lambda-exp>))

We needed to extend standard CPS conversion in order to support

backtracking. Whereas a deterministic program in standard CPS form has only
one continuation, a nondeterministic program in our approach always has two
continuations. One continuation handles what to do next on success (i.e the

return) and the other continuation represents what to do if backtracking is

required.

The implementation of this extended CPS conversion is straightforward. The
modified Cps-Convert takes three arguments instead of two, since we now have
two continuations. After CPS conversion, every user procedure will get two
additional continuation arguments. In addition, we extended PIL with one more
expression type called call-ccs [Ruf89, Ruf91]. Call-ccs takes a single argument, a
lambda procedure, and calls it with the current continuations.

5.2.6 Environment Analysis

Environment analysis supports the generation of optimized code for ProTalk
environments during run-time. Its principle goal is to identify those variables
can be safely stored on the stack and which variables must be allocated on the
heap. Heap-allocated variable environments are required for backtracking.
When backtracking occurs, a continuation is executed which may need to restore
the current environment to an earlier computational state. We cannot rely on
accessing the environment on the stack because the function which defined the
environment may have been exited, which would result in it being popped off the
stack.

The problem of identifying those variable which need to be stored on the
heap is equivalent to the problem of identifying those closures (i.e. lambda
expressions) which are being treated as data. When a closure is passed as data we
say it must be fully closed (i.e it's environment must be allocated on the heap). In
CPS-form, all variables are defined in closures. If it can be determined that a

given closure expression can only occur in the function position of any
reachable function calls then we the closure is said to be open. This means that
the closures variables can be safely allocated on the stack. However, if the
closure could potentially be used in a non-function position of any reachable
function call which exits the surrounding lambda, then the closure must be closed
and its associated variables need to be heap allocated.

During environment analysis, all closures are closed until proven open.
Closure analysis is complicated by the fact that a closure is not truly open if it
lexically occurs in another, fully closed closure. It is necessary to determine, for
each node in the abstract syntax tree, the set of variables referred to within
closed functions at or below that node.

5.2.7 Code Generation

Code generation is the last phase of the compiler and has received the least
attention. After phase six (environment analysis), all significant issues
concerning environment and control have been resolved. This should make it
relatively straightforward to translate an analyzed PIL program, in CPS form, to
Ada.
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5.3 Comparison to other Work

Conventional compiler technology does not address the issue of how to support
backtracking. There are many papers on techniques for compiling Prolog, a
language which, like ProTalk, uses depth-first backtracking to support
nondeterministic search [Warren83, Komatsu86]. There appears to be little
connection between recent Prolog compiler research and mainstream compiler
technology. This is unfortunate since mainstream compiler research has amasses
a large body of techniques for optimizing code. A major reason for this is most
Prolog compilers use an idiosyncratic model called the Warren Abstract Machine
(WAM). It is used both as a intermediate representation and as a target language.

The WAM has the virtue of being a easy target language for compilation
since its instruction set directly supports the high-level operations of depth-first
backtracking and pattern matching. However, the WAM does not provide the
simple instructions which are necessary for an optimizing compiler. It also has a
overly concrete model which makes it difficult to add "simpler" instructions.
Given sufficient knowledge, an optimizing compiler should be able to substitute
high-level instructions with lower-level and more efficient ones. As a result,
WAM-based compilers for Prolog are severely hampered in their ability to
perform code optimization. WAM is also deficient as an intermediate language
since its machine model is not conducive for the types of code analysis necessary
for significant code optimization.

Instead of adopting the WAM model, we chose another approach, based on
recent trends in compiler research [Kelsey89, Weise89]. It is centered around the
use of a simple intermediate language based on the lambda calculus. The guiding
principles of this approach are uniformity, simplicity, and maximal explicitness.
Uniformity is achieved by expressing all constructs in common terms. Simplicity
is achieved by using a minimal intermediate language. Maximal explicitness
requires that constructs should be as precise as possible, allowing the compiler
can reason about and optimize them.

We have extended this approach by augmenting CPS conversion to support
languages with failure continuations. As a result, we have established a
correspondence between the optimization of backtracking and the optimization of
closures. Making backtracking explicit has made logic programs amenable to
optimization techniques used by an emerging compiler technology which is
independent of any specific programming paradigm.

6. Using PrkAda with ProKappa

While it is possible to develop an application in ProKappa/Saber solely with the
core and ProTalk, or to develop an application using only the delivery libraries
(the PrkAda core; much as conventional development is done), we believe that it
will prove convenient to be able to develop applications in the ProKappa/Saber C-
based environment with Ada-language methods (thereby getting the best of both
worlds). Such methods should then transfer transparently to the delivery envi-
ronment. The goal of this segment of the work was to enable writing methods in
Ada and running them in ProKappa/Saber. This section describes the mecha-
nisms involved. Keep in mind that these comments apply to the Verdix Ada com-
piler and the ProKappa system, both running on Sun-4/Sparc stations.
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While the Ada compiler and GNU are compatible in certain respects (use of
the stack and linker format), they have several major incompatibilities. The ma-

jor difficulties we encountered were:

lo

a

The Ada environment is set up for an Ada top-level. Certain things get
done "automatically" by the Ada system, especially the before-the-main-
program initialization routines for Ada packages and procedures.

The Ada system makes different use of the registers than GNU C. In
particular, Ada keeps the stack limit in general register G4, GNU C as-
sumes that this register is available for the computations of any proce-
dure. Thus, typical GNU-C compiled code trashes the value in this regis-
ter.

. Ada data representations are different than those of C.
differences are:

Two important

3a. Strings. Both systems encode strings as packed arrays of charac-
ters, but Ada keeps a count (just before the string) of the number
of characters in the string, while C strings are null terminated.

3b. ProTypes. ProKappa has its own variant record type, the ProType,
which encompasses the useful datatypes of ProKappa (e.g., symbols, objects,
integers, and floats). The encoding of this datatype is somewhat non-standard: the
three lowest bits are used to encode the datatype tag. A ProType which is a pointer
thus uses a 29-bit pointer and a three bit tag; ProType integers use a quarter of
the tag space, and thus have a 30-bit range and appear to be multiplied by 4. Of
course, Ada pointers are 32 bits, and Ada does not support arithmetic operations on

pointers (except through unchecked conversions).

6.1 Our example:

We base the following discussion around the following example. ProKappa meth-
ods are functions of at least two arguments. These functions are placed as the val-
ues of slots. When one sends a message, "Mess," tO an object, "Obj," the system re-
trieves the value of the "Mess" slot of "Obj." This should be a function, which is

applied to "Ob j," "Mess," and the other arguments of the message. We wish to write
a method, "mymethod," which is sent a (PrkType) number, "val". This code instructs
an object that has it as a method to look up the value of its own "friend" slot,
which contains another object. This object then places one more than "val" in
the "score" slot of its friend. (Of course, the domain semantics of this example are

nonexistent; the imporant thing is that we demonstrate a variety of ProKappa be-
havior within Ada.)

with prk; use prk;

-- A vanilla method. When sent this message, with a number val,

-- the recipient finds a friend (in his friend slot), and stores

-- in the friend's score slot one more than the given value.

function mymethod (self : ptr; slotname : ptr; val : ptr)

return integer is

friendsym : ptr;
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friend : ptr;

i : integer;

begin

friendsym :- MakeSymbol ("friend");
friend :- GetValue (self, friendsym);

:- unbox (val) + 1;

SetValue (friend, MakeSymbol ("score"), box(i));

return i;

end mymethod;

Keep in mind that a "ptr" is ProType. This method is calling the MakeSymbol,
GetValue, and SetValue functions of the ProKappa core. The functions unbox and

box are used to convert PrkTypes to and from native types. For expository pur-

poses, the code is a bit more verbose than it needs to be; the entire function could
be a single line without declarations.

6.2 Overall architecture

Recalling the problem with register G4, noted above, we need to ensure that
whenever we enter Ada code this register is set properly. Thus, making our ex-

ample work requires four pieces of code, as illustrated in Figure 3.

1. The Ada code for mymethod, shown above.

. The Ada Prk package, which provides an Ada view of ProKappa func-

tions and datatypes, such as ptr, MakeSymbol, and SetValue.

3. A C interface between the ProKappa core and mymethod.

4. A C interface between the Prk package and the ProKappa core.

6.2.1 The Prk Package:

The Prk package is Ada code that defines the p tr datatype (as a 32 bit, uninter-

preted number), its subtypes, and provides an interface to each ProKappa user
function. It needs to be hand generated, but, except for string conversions, the

coding seems is relatively automatic. Most of the package is simply specifies that
these functions are in C (pragma interface) and providing the name for the C

function to call (pragma interface_name, in code part 4). MakeSymbol from a string

requires a little more work, as it must convert the Ada representation of a string

to the C representation.
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I MyMethod 1(Ada)

I Ada Core 1(Aria)

Figure 3. The Method Integration Architecture.

with system; use system;

package prk is
-- to be extended or modified as the type KTYPE varies:

type KTYPE is (CLASSP, INSTANCEP, ORIGINSLOTP, LOCALSLOTP,

INHERITEDSLOTP, UNIONSLOTP, SYMBOLP, CONSP, STRINGP,

BLANKP, ARRAYP, INTEGERP);

type c_string is access STRING (1..1000);

type ptr is range -(2"'31) .. (2"'31)-1;

subtype OBJECT is PTR; -- (CLASSP .. INSTANCEP).
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subtype SLOT is PTR; -- (ORIGINSLOTP .. UNIONSLOTP)

subtype ORIGINSLOT is PTR; -- (ORIGINSLOTP);

subtype SYMBOL is PTR; -- (SYMBOLP);

subtype LIST is PTR; -- (CONSP);

subtype KSTRING is PTR; -- (STRINGP);

subtype KARRAY is PTR; -- (ARRAYP);

subtype KINTEGER is PTR; -- (INTEGERP);

NIL : PTR ;

NUL : PTR ;

-- the empty list, none.

-- nothing; blank

function makesymbol (x : string) return ptr;

function c_makesymbol (x : address) return ptr;

pragma interface (c, C_makesymbol);

pragma interface_name (c_makesymbol, "_APrkMakeSymbol");

function findobject (x : ptr) return ptr;

pragma interface (c, findobject);

pragma interface_name (findobject, "_APrkFindObject");

function findobject (x : string) return ptr;

function getvalue (u : ptr; s : ptr) return ptr;

pragma interface (c, getvalue);

pragma interface_name (getvalue, "_APrkGetValue");

procedure setvalue (u : ptr; s : ptr; v : ptr);

pragma interface (c, setvalue);

pragma interface_name (setvalue, "_APrkSetValue");

function unbox to i (x : ptr) return integer;

pragma interface (c, unbox to i);

pragma interface_name (unbox to i, "_AUnboxToInt");

function unbox (x : ptr) return integer renames unbox_to_i;

function box to i (x : integer) return ptr;

pragma interface (c, box to i);

pragma interface name (box to i, "_ABoxTolnt");

function box (x : in--teger) return ptr renames box to i;

procedure print (x : address);

pragma interface (c, print);

pragma interface_name (print, "_APrint");

end prk;

package body prk is

t : string (1..1000); -- this doesn't seem to work when t is

-- local to the procedure makesymbol.

function makesymbol (x : string) return ptr is

begin

t(l..x'last) :- x;

t(x'last+l) :- ascii.nul;

return c_makesymbol(t'address);

end makesymbol;

function findobject (x : string) return ptr is

begin
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return findobject (makesymbol (x));

end findobject;

end prk;

6.2.2 The interface functions:

A most important detail of the interface to Ada is the need to set general register

04. This is accomplished with the following C code.

#include "g4.h"

int G4val;

void SetG4 ()

{

asm("sethi %hi(_G4val), %91");
asm("id [%gl+%lo(_G4val)l,%g4");

)

int APrkInit ()

(

asm("sethi %hi(_G4val), %91");

asm("st %sp, [%g1+%lo(_G4va1)]");

G4val - G4val - 25000;

SetG4();
return G4val;

Note we must call the function APrkInit at least once before calling any Ada

code. This stores the value of the end of stack in G4val. (We assume the stack is

25000 elements long.) We call SetG4 when we call an Ada function or return from
a call back into Ada.

Appendix C lists the Happy C interface to the ProKappa core.

provide a Happy C function for each core function.

We basically

The following code presents mymethod to the ProKappa/C environment.
Note that it does a little type conversion itself. A function of this form is required

for each Ada-language method. However, it is straightforward to write a program

to generate mechanically such functions from the Ada program text.

PrkType mymethod (PrkType self,
PrkType slotname,

PrkType val)

{
int ans;

SetG4();

ans- A_mymethod(self, slotname, val);
return (PrkType) ans;

Detail on using these files with the Verdix Ada system is also described in

Appendix C.
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One interesting attribute of this arrangement is that we now have a dynami-
cally linking Ada system. We can revise the Ada function mymethod, recompile
it, reload the new object file into the existing ProKappa/Saber environment and
continue working.

6.3 Limitations of this approach:

The following cautions should be noted about the results of this experiment.

. Problem: This stuff will likely work only for simple Ada methods--top
level functions that are not part of a package, don't do any "before
main" initialization, and don't rely on exceptions.

Resolution: Write only simple methods. While it is likely that it would be
possible to call the "before main"initialization Ada code and packages, it
is unrealistic to expect the Ada exception mechanism to work in the
ProKappa environment.

. Problem: One must be very careful about types. In particular, ProKappa
likes to use the bottom three bits of a number for tags; Ada has no

knowledge of this convention.

Resolution: Create an interface function in Happy C for each Ada
method. Create an interface function in C foreach ProKappa function.

3. Problem: This only works for Verdix Ada on the Sun 4/Spare machine.

Resolution: After all, the ProKappa development environment only
works on Suns and HP's. Presumably, similarmechanisms can be devel-

oped for other compilers and instantiations of ProKappa.
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Lecture notes, Computer

Appendix A. Limitations and restrictions of the current
system

We have attempted, in the development of the PrkAda system, to be as compatible
as possible with the ProKappa C environment. (This may, in fact, be a mistake;
such compatibility restricts the possible optimizations) The development of the
PrkAda core has so far revealed a number of restrictions on use and differences

in behavior with respect to the ProKappa core. It is worthwhile mentioning
these.

. Garbage collection. ProKappa has an automatic garbage collector. In
the alpha version of PrkAda, explicit "free" calls must be make to deallo-
cate storage, both cells and boxes. The system is also likely to be less
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than perfect about freeing all the storage it itself uses. (Such mistakes
are bugs.) Improving this situation is a major part of the development
of the next version of the system.

, Graphics. ProKappa has extensive facilities for developer C and end-
user graphics. We provide no graphic operations or primitives for in-
terrogating the X event stream. (Our code does not even need to be run
under X.)

. Exceptions. The ProKappa signal/exception mechanism has not been
implemented. Instead, keeping in the spirit of Ada, exceptions are sig-
naled with the Ada raise statement and handled by Ada exception han-
dlers. That is, one can't make a slot value be an exception. (It would be
relatively straightforard to extend the box datatype to include an excep-
tion enumeration, and to provide a module, similar to the one used for
messages, to raise the appropriate exceptions. However, we believe this
has little value.) We have created an eclectic collection of exceptions,

reflecting the particular implementation of the PrkAda core, and the
lack of specification of the ProKappa error collection.

. Stack arrays and lists. The purpose of a stack array is to automatically
reclaim storage on exit from a routine. Ada doesn't allow pointers to
objects on the stack. Hence, we cannot directly implement stack arrays
in Ada. In the Beta version, we expect to implement some form of data
pools for similar effect. That is, conses and array can be designated to
come from a particular pool; there will be operations to create pools,
make a pool the current pool, and free all the storage of a pool.

, Functions as explicit objects. Ada doesn't have functions as explicit ob-
jects. Instead, in PrkAda, we manipulate a user-defined enumerated
type whose names correspond to the user functions, as described above.

. Application variables/environment variables. Applications can have
variables associated with them, much like Unix variables, and one can

also interrogate the environment for its variables. Since we are build-
ing portable Ada code, it seems wiser to allow the user to call specific
operating system variable mechanisms in his or her own code. The ef-
fect of application variables that are not meant to inherit from the Unix
environment can be better achieved by using slots on particular

"environment" objects in the application.

. Loops. ProKappa has C macros Loop, LoopObjectSlots, and
LoopSlotsFacets to loop through the elements of a list, through the slots
of an object, and through the facets of a slot, respectively. Their syntax
is somewhat awkward. Ada doesn't have macros. Instead, we imple-

mented functionality of these macros with a set of generic functions.
We have expanded this set to include other looping constructs, such as
the ability to loop through multiple lists simultaneously.

. The date and time datatypes. These are a planned extension for the next
version of ProKappa. We plan to extend our system to include them too.
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. Slot descriptors. Slot descriptors are an internal ProKappa datatype; it
was a mistake to mention them in the user manuals. We have not repli-
cated this mistake.

10. Datatypes. We have some slight differences in the set of datatypes al-
lowed for slot values. We exclude certain ProKappa types (e.g. errors, as
exceptions aren't objects in Ada, and slot descriptors) and include a few
others (e.g., different implementation varieties of objects and slots,
particular constants.) However, all the major datatypes are represented.

11. Loaded applications. As a runtime system, we do not include the concept
of an application not being loaded. We interpret "loaded" for applica-
tions as the same as "not deleted."

12. Type strings. The PrkTypeName function has been changed to use
strings appropriate for our datatype, and to map boxes to strings, not
integers. This is another function that really shouldn't be documented
at the user level.

13. Copying strings. The ProKappa MakeString function "boxes" a string.
It has an optional argument that determines if the string is copied.
PrkAda's Make_String function always copies its argument, as Ada
doesn't permit pointers to constants or elements on the stack.

14. Returned values. Various ProKappa functions and procedures take ar-
guments that are pointers to values. The pointed-to values are then set
by the function. For example, PrkGetValueOrValues has an "address of a
PrkBool" argument, where it sets the underlying (pointed to) boolean to
indicate if the slot is single or multi-valued. In general, this technique
is used in C to get the effect of out parameters. On one hand, Ada does
not allow functions that have out parameters. On the other hand, Ada
procedures really do have out parameters. We often resolve this con-
flict by providing two overloaded forms of such routines, one a proce-
dure where both the functional answer and the additional information

are out parameters, and the other a function that returns only the
functional information.

15. Message parameters. Parameters to messages must be boxes. Messages
have a maximum number of parameters (currently 5, easily raised).

16. Boxed booleans vs. booleans. Many ProKappa routines take booleans as

arguments or return booleans as results. While there is a boxed boolean
datatype, this is not always the most convenient form for such argu-
ments. That is, IF wants a real boolean. Should the PrkAda routines deal

in boxed booleans or plain booleans? The resolution of this conflict lies
in part in providing overloaded versions of these routines. However, it
is then to simple to create ambiguous overload resolution paths. We are
currently exploring providing different named versions of functions,
depending on whether the desired answer is a boolean or boxed boolean.
In general, it appears that most uses of functions that take or return
booleans are more convenient with ordinary booleans; the unusually-
named functions will thus be used for the boxed versions.
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17. Monitor firing order. Due to implementation stupidity, PrkAda is some-
what inconsistent about the order of firing of attachment and detach-

ment monitors. In general, if the order of equivalent events with re-
spect to the monitor system is not specified. That is, if attachment of a
monitor at the class level causes the attach method of that monitor to

fire in several children, the order of that firing is not specified in

ProKappa and may differ between ProKappa and PrkAda.

18. Static facets. PrkAda, alpha version, does not have the notion of a static
facet.

19. Saving applications. The only saving/loading mechanism in the alpha
version of PrkAda is the ASCII application loader/saver.

20. Unimplemented functions. Certain functions, such as the ability to re-
name slots, have not be implemented. These functions are appropriate

for a development environment, where the developer may need to make

changes in the overall representations. However, we view these func-
tions to be inconsistent with the notion of a delivery environment;

their existence precludes many useful optimizations.

Appendix B. Read-eval-print help

A complete listing of the abbreviations and functions available in the read-eval-

print mechanism.

-> heZp

Use & for quote; otherwise, symbols with assigned values and function

names evaluate_ others are self-quoting.

Long_Help for full command list.
Command abbreviations are

ae array_elmt
afv add facet value

afvs add facet values

append ap_nd_lists
av add value
avs add values

car lis_first
cdr cdr

children object_children
cons make cons

copy copy_list
ddisp detailed_display

disp display

fo find_object

getprop get_property

gfv get_facet_value

gfvl get_facet_values_list
gfvs get_facet_values

gv get_value

gvs get_values

gvsl get_values_list
last list last cons

m
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length
list

load

member

mf

nun

mo

mrfd

mrsd

ms

nconc

nth

ows

parents

remprop
rfv

rfvs

rplaca

rplacd
rv

rvs

sae

send

serf

setprop

setq

sfv

sfvs

sop

sv

svs

list_length
make list

load_ascii_app

find list elmt

make-faceT

make monitor

make_object
make raw facet data

make raw slot data

make--slo[ --

destructiveappend_lists
list nth

objeCts_with_slot

object_parents

remove_property
remove facet value

remove facet values

set_li_t first
set list rest

remove value

remove values

set_ar_ay_elmt

send_msg

assign

setproperty

assign
set facet value

set facet values

set_object_parents

set value

set values

-> long_help

Available commands are

add facet value

add facet values

add_--list_ptr_elmt

add value

add values

app_classes

app_instances

app_modules

app_name

append_lists

apps

array_elmt

array_fill_count

arraysize

array to_list

assign

attach monitor

cdr

clear monitor_flags

clear_slot_flags

collection_length

copy_list
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delete_app

delete_facet
delete list elmt

delete_list_ptr_elmt

delete module

delete_object
delete slot

destructive_append_lists

detach monitor

detailed_display

display
exit

fill_array

find_app
find list elmt

find--module

find_object

find_symbol
free list

free_objects_with_slot_list

free_type

get_c_value

get_facet_inheritance

get_facet_value

get_facet_value or values

get_facet_values

get_facet_values_list

get_local_facet_value or values

get_local_value or values

get_method_fn

get_msg_fn

get_property

get_slot_type

get_type

get_value

get_value or values

get_values

get_values_list

help

is_ancestor_object

is_anonymous_object

is_app

is_array

is_array_equal
is c value

is char

is collection

is cons

is_delet ed_app
is deleted module

is_deleted_object
is double float

is_empty_list

is_equal

is facet

is fixnum

is float

is instance
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is list

is_list_equal

is_loaded_app
is loaded module

is_loaded_object
is method

is module

is monitor

is multi value facet inheritance

is multi value slot inheritance

is number

is_object
is raw facet data

is--raw--slot data

isZsingle_f_oat
is slot

is slot reference

is static facet

is_string

is_symbol

is_system_object
list first

list last cons

list_length
list nth

list--rest

list to array

load_app

load_ascii_app
load module

long_help

make_app

make_array
make c value

make cons

make double float

make facet

make--list

make method

make module

make monitor

make_object
make raw facet data

make--raw--slot data

makeSsingle_f_oat

make slot

make slot reference

make stack list

makeSst ring

make_symbol
method fn name

module classes

module_instances

module name

mon info filter

monZinfo_flags

mon_info is multi_value_slot

mon_info_monitor

PrkAda Interim Report

54



IntelliCorp PrkAda Interim Report

mon_info_obJect

mon_infopriority
mon info slot name

monitor l--evel--

monitor_priority

move_object

hOOp

object_app

object_children

object_module

object_name

object_parents

objects_with_slot

print

put

put_line
remove facet value

remove facet values

removeproperty
remove value

remove values

rename_app
rename facet

rename module

rename_object
rename slot

reset_system_object

save_app

save_ascii_app
save module

send_msg

set_array_elmt

set_array_fill_count
set facet inheritance

set_facet_value
set facet values

set list first

set--list--rest

set_monitor_flags
set monitor level

set_monitor_priority

set_object_parents

set_property

set_slot_flags
set slot inheritance

set_slot_type

set_system_object
set value

set values

slo_ inheritance

slot_origin

slot_reference_object

slot_reference_slot_name

switch_app

test_monitor_flags

test slot_flags

verbOse_print
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Appendix C. Code for running Ada in ProKappa

C.1 The Happy C interface to the ProKappa core

The following functions are the Happy C interface to the ProKappa core. Note
that we rely on C and the Happy C compiler for some of the type conversions, and
that we always call SetG4 before returning to Ada. In a complete system, this code
would need to be generated, semi-mechanically, for all user functions in
ProKappa.

#include "g4.h"

PrkSymbol APrkMakeSymbol (char* s)
{

PrkSymbol sym;
sym - PrkMakeSymbol (s);

SetG4(); -- Note, we have to call SetG4 just before

-- returning. Hence, the use of the temporary in
-- these functions.

return sym;
}

PrkType APrkFindObject (PrkType s)

PrkType val;

val - PrkFindObject (s);

SetG4();
return val;

]

PrkType APrkGetValue (PrkType o, PrkType s)
{

PrkType val;
val - PrkGetValue (o, s);

SetG4();
return val;

l

void APrkSetValue (PrkType o, PrkType s, PrkType v)

{

PrkSetValue (o,s,v);
SetG4();

return;

}

int AUnboxTolnt (PrkType x)

{
SetG4();
return (int) x; -- note the cast.

}

PrkType ABoxToInt (int x)

{
return (PrkType) x; -- note the cast.
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)

void APrintf (char* x)

i

printf ("<%.20S>, [%x]\n", x, x);

l

PrkAda Interim Report

C.2 The Verdix Ada system

Writing programs with the Verdix Ada system requires the following steps:

. Establishing an Ada library, using a Verdix program for
ation.

library crc-

, Compiling Ada functions with respect to that library,
compiler.

using the Verdix

, Linking those programs with respect to a designated "main" procedure,
using the Verdix linker, which (1) creates an initialization program
and the data for that program, (2) creates a command file for the stan-
dard Unix linker that links elements of the Verdix library, the initial-
ization program, and the users code, and (3) invoking this command
file to create an executable image.

Using the -V switch on the Verdix Ada loader, we get a listing of which files
are required to build a particular executable. In general, we notice the need to
load (using the Saber load command) the following object files from the Ada li-

brary:

tvada6_0

tvads6_0
tvads6 0

tvads6_0

tvads6 0

tvads 6_0

tvads 6_0

rstandard/.objects/ayatem01

ratandard/.objecta/aystem02

rstandard/.objects/v_i__types01

Istandard/.objects/v_i_types02

rstandard/.objects/link_blockOl

rstandard/.objects/link_block_b01

Istandard/.objects/library.a

Additionally, we need the object files for the prk package and the object files
for the particular methods we've written. Here, prktop is a pseudo-top-level that
provides certain essential constants.

.objecta/prktop.o

.objects/toprk01

.objecta/toprk02

.objects/toprktop01

.objects/mymethod01

We can now install the C function mymethod on a slot and send messages.
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Appendix D. Contractual notes

D.1 Personnel

The following people worked on this contract in the reporting quarter:

Robert E. Filman, Senior Scientist, Principal Investigator.
Roy Feldman, Scientist.

D.2 Travel

Dr. Filman and Mr. Feldman attended the National Conference on Artificial

Intelligence in Anahiem in July.

D.3 Publications

None this quarter

D.4 Estimated progress

At the end of this quarter, the work on the contract is 49% complete. We plan on
completing an additional 16% of the contract in the coming quarter, and on com-
pleting substancially all the work on the contract by the end of February, 1992.
These plans may be effected by the availability of additional funding or changes
in personnel.

Legal Notice

These SBIR data are furnished with SBIR rights under Contract No. NAS 8-38488.
For a period of 2 years after acceptance of all items to be delivered under this

contract, the Government agrees to use these data for Government purposes only,
and they shall not be disclosed outside the Government (including disclosure for
procurement purposes) during such period without permission of the Contractor,
except that, subject to the foregoing use and disclosure prohibitions, such data
may be disclosed for use by support Contractors. After the aforesaid 2-year period
the Government has a royalty-free license to use, and to authorize others to use on
its behalf, these data for Government purposes, but is relieved of all disclosure
prohibitions and assumes no liability for unauthorized use of these data by third
parties. This Notice shall be affixed to any reproductions of these data, in whole
or in part.
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